Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02030
Number of page(s) 8
Section BFS2020-Biotechnology and Food Science
Published online 27 January 2021
  1. F. Hasan, A.A. Shan, A. Hameed. Industrial applications of microbial lipase. Enzyme Microb Tech, 39: 235-251 (2016) [CrossRef] [Google Scholar]
  2. G. Zhou, L. Hou, Y. Yao, C.L. Wang, X.H. Cao, Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzea 100-8 strains: Towards the production of different soy sauce flavors. J. Proteomics, 75:3914-3924 (2012) [CrossRef] [PubMed] [Google Scholar]
  3. X. Zhang, L. Xia, Expression of Talaromyces thermophilus lipase gene in Trichoderma reesei by homologous recombination at the cbh1 locus. J Ind Microbiol Biot, 44: 377-385 (2017) [CrossRef] [Google Scholar]
  4. J.L. Xia, B. Huang, Z.Y. Nie, W. Wang, Production and Charact erization of Alkaline Extracellular Lipase from Newly lsolated Strain Aspergillus Awamori HB-03. J Central South U Tech, 18: 1425-1433 (2001) [CrossRef] [Google Scholar]
  5. E. Rigo, A.E. Polloni, D. Remonatto, F. Arbter, S. Menoncon, J.V. Oliveira, D. de Oliveira, H. Treichel, S.J. Kalil, J.L. Ninow, L.M. Di, Esterification activity of novel fungal and yeast lipases. Appl Biochem Biotechnol, 162: 1881-1888 (2010) [CrossRef] [PubMed] [Google Scholar]
  6. B. Franken, T. Eggert, K.E. Jaeger, M. Pohl, Mechanism of acetaldehyde-induced deactivation of microbial lipases. BMC biochem, 12: 10 (2011) [CrossRef] [PubMed] [Google Scholar]
  7. S.Z. Su, J.G. Zhang, M.G. Huang, D.Z. Wei, Optimization of the lipase-catalyzed irreversible transesterification of Pistacia chinensis Bunge seed oil for biodiesel production. Russ Chem B+, 63: 2719-2728 (2015) [Google Scholar]
  8. M.C. Montiel, M. Serrano, M.F. Maximo, M. Gomez, R.S. Ortega, J. Bastida, Synthesis of cetyl ricinoleate catalyzed by immobilized Lipozyme ® CalB lipase in a solvent-free system. Catal Today, 120: 173-178 (2015) [Google Scholar]
  9. W.J. Yang, H. Cao, L. Xu, H.J. Zhang, Y.J. Yan, A novel eurythermic and thermostale lipase LipM from Pseudomonas moraviensis M9 and its application in the partial hydrolysis of algal oil. BMC biotechnol, 15: 94 (2015) [CrossRef] [PubMed] [Google Scholar]
  10. Y. Liu, C. Li, S.H. Wang, W.Y. Chen, Solid-supported microorganism of Burkholderia cenocepacia cultured via solid state fermentation for biodiesel production:optimization and kinetics. Appl Energ, 113: 713-72 (2014) [CrossRef] [Google Scholar]
  11. P.D. Tomke, V.K. Rathod. Ultrasound assisted lipase catalyzed synthesis of cinnamyl acetate via transesterification reaction in a solvent free medium. Ultrason Sonochem, 27: 241-246 (2015) [CrossRef] [PubMed] [Google Scholar]
  12. T. Siodmiak, D. Mangelings, H.Y. Vander, M. Ziegler-Borowska, M.P. Marsza, High enantioselective Novozym 435-catalyzed esterification of (R,S)-flurbiprofen monitored with a chiral stationary phase. Appl Biochem Biotechnol, 175: 2769-2785 (2015) [CrossRef] [PubMed] [Google Scholar]
  13. N.R. Khan, S.V. Jadhav, V.K. Rathod, Lipase catalyzed synthesis of cetyl oleate using ultrasound: Optimisation and kinetic studies. Ultrason Sonochem, 27: 522-529 (2015) [CrossRef] [PubMed] [Google Scholar]
  14. S.C.B. Gopinath, P. Anbu, T. Lakshmipriya, A. Hilda, Strategies to characterize fungal lipases for applications in medicine and dairy industry. BioMed Res Int international, 15:45-49 (2013) [Google Scholar]
  15. D. Glod, Modification of fatty acid selectivity of Candida an tarctica lipase A by error-prone PCR. Biotechnol Lett, 39: 767-773 (2017) [Google Scholar]
  16. Y. Liao, M. Zeng, Z.F. Wu, H. Chen, H.N. Wang, Q. Wu, Z. Shan, X.Y. Han, Improving phytase enzyme activity in a recombinant phyA mutant phytase from Aspergillus niger N25 by error-prone PCR. Appl Biochem Biotech, 166: 549-562 (2016) [CrossRef] [Google Scholar]
  17. M.S. Packer, D.R. Liu. Methods for the directed evolution of proteins. Nat Rev Genet, 16: 379-394 (2015) [CrossRef] [PubMed] [Google Scholar]
  18. H.M. Zhao, L. Giver, Z.X. Shao, J.A. Affholter, F.H. Arnold, Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat biotechnol, 16: 258-261 (1998) [CrossRef] [PubMed] [Google Scholar]
  19. Z. Shao, H. Zhao, L. Giver, F.H. Arnold, Random-priming in vitro recombination: an effective tool for directed evolution. Nucleic Acids Res, 26: 681-683 (1998) [CrossRef] [PubMed] [Google Scholar]
  20. D.J. Pollard, J.M. Woodley, Biocatalysis for pharmaceut ical intermediates: the future is now. Trends Biotechnol, 25: 66-73 (2007) [CrossRef] [PubMed] [Google Scholar]
  21. R.A. Sheldon, S. Van Pelt, Enzyme immobilization in biocatalysis: why, what and how. Chem Soc Rev, 2: 6223-6235 (2013) [Google Scholar]
  22. R.C. Rodrigues, O. Claudia, B.M. Angel, T. Rodrigo, F.G.L. Roberto, Modifying enzyme activity and selectivity by immobilization. Chem Soc Rev, 42: 6290-6307 (2013) [CrossRef] [PubMed] [Google Scholar]
  23. B. Brena, P. Gonzalez-Pombo, F. Batista-Viera, Immobilization of enzymes: a literature survey. Methods mol biol, 1051: 15-31 (2013) [PubMed] [Google Scholar]
  24. X. Wang, T.A. Makal, H.C. Zhou, Protein immobilization in metal-organic frameworks by covalent binding. Aus J Chem, 67: 1629-1631 (2014) [CrossRef] [Google Scholar]
  25. Y.L. Fan, C.X. Ke, F. Su, K. Li, Y.J. Yan, Various types of lipase immobilized on dendrimer-functionalized magnetic nanocomposite and application in biodiesel preparation. Energ Fuel, 31: 4372-4381 (2017) [CrossRef] [Google Scholar]
  26. R. Schoevaart, M.W. Wolbers, M. Golubovic, M. Ottens, A.P.G. Kieboom, F. van Rantwijk, L.A.M. van der Wielen, P.A. Sheldon, Preparation, optimization, and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng, 87: 754-762 (2004) [CrossRef] [PubMed] [Google Scholar]
  27. Q. Zhang, J. Sheng, J.Z. Liu, H.F. Zheng, M. Sun, Chitosan immobilized marine microorganism YS2071 lipase and its enzymatic properties. Pro Fish Sci, 36:100-106 (2015) [Google Scholar]
  28. K. Li, Y.L. Sun, J. Xu, H. Zhang, H. Zheng, W.W. Zhang, H.C. Zhou, Optimizing the effect of pectinase immobilized on chitosan on maca juice clarification by response surface methodology. J Food Sci, 4 :33-37 (2013) [Google Scholar]
  29. Y.W. Wang, H.X. Chen, J. Wang, L.X. Xing, Preparation of active corn peptides from zein through double enzymes immobilized with calcium alginate-chitosan beads. Process Biochem, 49:1682-1690 (2014) [Google Scholar]
  30. E. Cappannnella, I. Benucci, C. Lombardelli, K. Liburdi, T. Bavaro, M. Esti, Immobilized lysozyme for the continuous lysis of lactic bacteria in wine:Bench-scale fluidized-bed reactor study. Food Chem, 210:49-55 (2016) [CrossRef] [PubMed] [Google Scholar]
  31. M.B. Majewski, A.J. Howarth, P. Li, M.R. Wasielewski, J.T. Hupp, O.K. Farha, Enzyme encap sulation in metal-organic frameworks for applications in catalysis. Cryst Eng Commun, 19: 4082-4091 (2017) [CrossRef] [Google Scholar]
  32. S. Patra, T. Hidalgo-Crespo, A. Permyakova, C.S.C. Sicard, A. Chausse, Design of metal organoic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform. Mater Chem B, 3: 8983-8992 (2015) [CrossRef] [Google Scholar]
  33. Z. Ren, J. Luo, Y. Wan, Highly permeable biocatalytic men brane prepared by 3D modification: metai-organic frameworks ameliorate its stability for micropollutants removal. Chem Eng J, 348: 389-398 (2018) [Google Scholar]
  34. K. Chen, F.H. Arnold. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. P Natl Acad Sci USA, 90:5618-5622 (1993) [CrossRef] [Google Scholar]
  35. E.O. Mccullum, B.A. Williams, J. Zhang, J.C. Chaput, Random mutagenesis by error-prone PCR. Meth Mol Biol, 634:103-109 (2010) [CrossRef] [Google Scholar]
  36. J.J. Tiesinga, G. Van Pouderoyen, M. Nardini, S. Ransac, B.W. Dijkstra, Structural basis of phospholipase activity of Staphylococcus hyicus lipase. J Mol Biol, 371:447-456 (2007) [Google Scholar]
  37. K. Xu, D.L. Zeng, J. Wu, Y.Y. Wang, Y.Y. Yang, G.H. Wang, Preparation of magnetic Chitosan microspheres and study on immobilized lactase. App Chem Ind, 11: 2550-2554 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.