Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02047
Number of page(s) 8
Section BFS2020-Biotechnology and Food Science
Published online 27 January 2021
  1. D. Delmas, A. Lançon, D. Colin, B. Jannin, N. Latruffe, Curr. Drug Targets. Resveratrol as a chemopreventive agent: a promising molecule for fighting cancer, 7(4), 423-442 (2006) [CrossRef] [PubMed] [Google Scholar]
  2. L. Bavaresco, Drugs Exp. Clin. Res. Role of viticultural factors on stilbene concentrations of grapes and wine, 29(5-6), 181 (2003) [PubMed] [Google Scholar]
  3. B. B. Aggarwal, A. Bhardwaj, R. S. Aggarwal, N. P. Seeram, S. Shishodia, Y. Takada, Anticancer Res. Role of Resveratrol in Prevention and Therapy of Cancer: Preclinical and Clinical Studies, 24(5A), 2783-2840 (2004) [PubMed] [Google Scholar]
  4. C. H. Cottart, V. Nivet‐Antoine, C. Laguillier-Morizot, J. L. Beaudeux, Mol. Nutr. Food Res. Resveratrol bioavailability and toxicity in humans, 54(1), 7-16 (2010) [CrossRef] [PubMed] [Google Scholar]
  5. J. Constant, Clin. Cardiol. Alcohol, ischemic heart disease, and the French paradox, 20(5), 420-424 (1997) [CrossRef] [PubMed] [Google Scholar]
  6. Y. Wang, F. Catana, Y. Yang, R. Roderick, R. B. van Breemen, J. Agric. Food Chem. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine, 50(3), 431-435 (2002) [CrossRef] [PubMed] [Google Scholar]
  7. J. Burns, T. Yokota, H. Ashihara, M. E. Lean, A. Crozier, J. Agric. Food Chem. Plant foods and herbal sources of resveratrol, 50(11), 3337-3340 (2002) [CrossRef] [PubMed] [Google Scholar]
  8. M. Athar, J. H. Back, X. Tang, K. H. Kim, L. Kopelovich, D. R. Bickers, A. L. Kim, Toxicol. Appl. Pharmacol. Resveratrol: a review of preclinical studies for human cancer prevention, 224(3), 274-283 (2007) [Google Scholar]
  9. M. S. Baliga, S. Meleth, S. K. Katiyar, Clin. Cancer Res. Growth inhibitory and antimetastatic effect of green tea polyphenols on metastasis-specific mouse mammary carcinoma 4T1 cells in vitro and in vivo systems, 11(5), 1918-1927 (2005) [CrossRef] [PubMed] [Google Scholar]
  10. A. Amri, J. C. Chaumeil, S. Sfar, C. Charrueau, J. Control. Release. Administration of resveratrol: what formulation solutions to bioavailability limitations, 158(2), 182-193 (2012) [CrossRef] [PubMed] [Google Scholar]
  11. M.J. O’Neil, P.E. Heckelman, C.B. Koch, K.J. Roman, C.M. Kenny, M.R. D’Arecca, The Merck Index (fourteenth ed. Merck Publishing, Whitehouse Station, 2006) [Google Scholar]
  12. E. Scott, W. P. Steward, A. J. Gescher, K. Brown, Mol. Nutr. Food Res. Resveratrol in human cancer chemoprevention–choosing the ‘right’dose, 56(1), 7-13 (2012) [CrossRef] [PubMed] [Google Scholar]
  13. B. C. Trela, A. L. Waterhouse, J. Agric. Food Chem. Resveratrol: isomeric molar absorptivities and stability, 44(5), 1253-1257 (1996) [Google Scholar]
  14. Y. Schneider, F. Vincent, B. Duranton, et al. Cancer Lett. Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells, 158(1), 85-91 (2000) [Google Scholar]
  15. E. H. Siemann, L. L. Creasy, Am. J. Enol. Vitic. Concentration of the phytoalexin resveratrol in wine, 43(1), 49-52 (1992) [Google Scholar]
  16. A. Csiszar, Ann.NY Acad.Sci. Anti-inflammatory effects of resveratrol: possible role in prevention of age-related cardiovascular disease, 1215, 117(2011) [CrossRef] [Google Scholar]
  17. G. Lanzilli, A. Cottarelli, G. Nicotera, S. Guida, G. Ravagnan, M. P. Fuggetta, Inflammation. Anti-inflammatory effect of resveratrol and polydatin by in vitro IL-17 modulation Inflammation, 35(1), 240-248 (2012) [PubMed] [Google Scholar]
  18. X. Z. Li, X. Wei, C. J. Zhang, X. L. Jin, J. J. Tang, G. J. Fan, B. Zhou, Food Chem. Hypohalous acid-mediated halogenation of resveratrol and its role in antioxidant and antimicrobial activities, 135(3), 1239-1244 (2012) [CrossRef] [PubMed] [Google Scholar]
  19. E. Fibach, E. Prus, N. Bianchi, et al. Int. J. Mol. Med. Resveratrol: Antioxidant activity and induction of fetal hemoglobin in erythroid cells from normal donors and β-thalassemia patients, 29(6), 974-982 (2012) [PubMed] [Google Scholar]
  20. D. Bonnefont-Rousselot, Nutrients. Resveratrol and cardiovascular diseases, 8(5), 250 (2016) [Google Scholar]
  21. A. Y. Berman, R. A. Motechin, M. Y. Wiesenfeld, M. K. Holz, npj Precis. Oncol. The therapeutic potential of resveratrol: a review of clinical trials, 1(1), 1-9 (2017) [Google Scholar]
  22. Y. R. Li, S. Li, C. C. Lin, Biofactors. Effect of resveratrol and pterostilbene on aging and longevity, 44(1), 69-82 (2018) [CrossRef] [PubMed] [Google Scholar]
  23. V. C. Thipe, K. P. Amiri, P. Bloebaum, et al. Int. J. Nanomed. Development of resveratrol-conjugated gold nanoparticles: interrelationship of increased resveratrol corona on anti-tumor efficacy against breast, pancreatic and prostate cancers, 14, 4413 (2019) [CrossRef] [Google Scholar]
  24. A. Acevedo-Fani, H. D. Silva, R. Soliva-Fortuny, O. Martín-Belloso, A. A. Vicente, Food Hydrocolloids. Formation, stability and antioxidant activity of food-grade multilayer emulsions containing resveratrol, 71, 207-215 (2017) [Google Scholar]
  25. T. Cardoso, A. Gonçalves, B. N. Estevinho, F. Rocha, Powder Technol. Potential food application of resveratrol microparticles: Characterization and controlled release studies, 355, 593-601 (2019) [Google Scholar]
  26. G. F. Balata, E. A. Essa, H. A. Shamardl, S. H. Zaidan, M. A. Abourehab, Drug Des. Dev. Ther. Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol, 10, 117 (2016) [CrossRef] [Google Scholar]
  27. T. Walle, Ann.NY Acad.Sci. Bioavailability of resveratrol, 1215(1), 9-15 (2011) [CrossRef] [Google Scholar]
  28. A. Francioso, P. Mastromarino, A. Masci, M. d’Erme, L. Mosca, Med. Chem. Chemistry, stability and bioavailability of resveratrol, 10(3), 237-245 (2014) [Google Scholar]
  29. S. Yang, H. Gao, Pharmacol. Res. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy, 126, 97-108 (2017) [CrossRef] [PubMed] [Google Scholar]
  30. C. Hong, Y. Dang, G. Lin, et al. Int. J. Pharm. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation, 477(1-2), 251-260 (2014) [CrossRef] [PubMed] [Google Scholar]
  31. R. B. Greenwald, Y. H. Choe, J. McGuire, C. D. Conover, Adv. Drug Deliv. Rev. Effective drug delivery by PEGylated drug conjugates, 55(2), 217-250 (2003) [Google Scholar]
  32. W. Li, S. Feng, Y. Guo, Nanomedicine. Tailoring polymeric micelles to optimize delivery to solid tumors, 7(8), 1235-1252 (2012) [Google Scholar]
  33. W. Li, J. Li, J. Gao, et al. Biomaterials. The fine-tuning of thermosensitive and degradable polymer micelles for enhancing intracellular uptake and drug release in tumors, 32(15), 3832-3844 (2011) [CrossRef] [PubMed] [Google Scholar]
  34. A. C. Santos, I. Pereira, M. Pereira-Silva, et al. Trends Food Sci. Technol. Nanocarriers for resveratrol delivery: Impact on stability and solubility concerns, 91, 483-497 (2019) [Google Scholar]
  35. J. E. Cacace, G. Mazza, J. Agric. Food Chem. Extraction of anthocyanins and other phenolics from black currants with sulfured water, 50(21), 5939-5946 (2002) [CrossRef] [PubMed] [Google Scholar]
  36. C. Liyana-Pathirana, F. Shahidi, Food Chem. Optimization of extraction of phenolic compounds from wheat using response surface methodology, 93(1), 47-56 (2005) [Google Scholar]
  37. A. I. Romero-Pérez, R. M. Lamuela-Raventós, C. Andrés-Lacueva, M. C. de la Torre-Boronat, J. Agric. Food Chem. Method for the quantitative extraction of resveratrol and piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content, 49(1), 210-215 (2001) [CrossRef] [PubMed] [Google Scholar]
  38. M. C. Guamán-Balcázar, W. Setyaningsih, M. Palma, C. G. Barroso, Appl. Acoust. Ultrasound-assisted extraction of resveratrol from functional foods: cookies and jams, 103, 207-213 (2016) [Google Scholar]
  39. S. Pimentel-Moral, I. Borrás-Linares, J. Lozano-Sánchez, D. Arráez-Román, A. Martínez-Férez, A. Segura-Carretero, J. Pharm. Biomed. Anal. Microwave-assisted extraction for Hibiscus sabdariffa bioactive compounds, 156, 313-322(2018) [CrossRef] [PubMed] [Google Scholar]
  40. A. Babazadeh, A. Taghvimi, H. Hamishehkar, M. Tabibiazar, Food Biosci. Development of new ultrasonic–solvent assisted method for determination of trans-resveratrol from red grapes: Optimization, characterization, and antioxidant activity (ORAC assay), 20, 36-42 (2017) [Google Scholar]
  41. Z. Piñeiro, A. Marrufo-Curtido, C. Vela, M. Palma, Food Bioprod. Process. Microwave-assisted extraction of stilbenes from woody vine material, 103, 18-26 (2017) [CrossRef] [Google Scholar]
  42. H. F. Zhang, X. H. Yang, Y. Wang, Trends Food Sci. Technol. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions, 22(12), 672-688 (2011) [Google Scholar]
  43. S. Al Jitan, S. A. Alkhoori, L. F. Yousef, Studies in Natural Products Chemistry. Phenolic acids from plants: extraction and application to human health, 58, 389-417 (Elsevier , 2018) [CrossRef] [Google Scholar]
  44. C. Mantell, M. Rodríguez, E. Martinez de la Ossa, Eng. Life Sci. A screening analysis of the high‐pressure extraction of anthocyanins from red grape pomace with carbon dioxide and cosolvent, 3(1), 38-42 (2003) [Google Scholar]
  45. L. Casas, C. Mantell, M. Rodríguez, et al. J. Food Eng. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide, 96(2), 304-308 (2010) [Google Scholar]
  46. L. H. Quan, J. W. Min, Y. Jin, C. Wang, Y. J. Kim, D. C. Yang, J. Agric. Food Chem. Enzymatic biotransformation of ginsenoside Rb1 to compound K by recombinant β-glucosidase from Microbacterium esteraromaticum, 60(14), 3776-3781 (2012) [CrossRef] [PubMed] [Google Scholar]
  47. Z. Wang, L. C. Zhao, W. Li, L. X. Zhang, J. Zhang, J. Liang, Molecules. Highly efficient biotransformation of polydatin to resveratrol by snailase hydrolysis using response surface methodology optimization, 18(8), 9717-9726 (2013) [CrossRef] [PubMed] [Google Scholar]
  48. J. N. Averilla, J. Oh, Z. Wu, et al. J. Sci. Food Agric. Improved extraction of resveratrol and antioxidants from grape peel using heat and enzymatic treatments, 99(8), 4043-4053 (2019) [CrossRef] [PubMed] [Google Scholar]
  49. L. Zhou, B. Jiang, T. Zhang, S. Li, Food Biosci. Ultrasound-assisted aqueous two-phase extraction of resveratrol from the enzymatic hydrolysates of Polygonum cuspidatum, 31, 100442 (2019) [Google Scholar]
  50. M. Leopoldini, T. Marino, N. Russo, M.Toscano, J. Phys. Chem. A. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism, 108(22), 4916-4922 (2004) [Google Scholar]
  51. M. Fukui, H. J. Choi, B. T. Zhu, Free Radic. Biol. Med. Mechanism for the protective effect of resveratrol against oxidative stress-induced neuronal death, 49(5), 800-813 (2010) [CrossRef] [PubMed] [Google Scholar]
  52. M. Mokni, S. Elkahoui, F. Limam, M. Amri, E. Aouani, Neurochem. Res. Effect of resveratrol on antioxidant enzyme activities in the brain of healthy rat, 32(6), 981-987 (2007) [CrossRef] [PubMed] [Google Scholar]
  53. J. Zheng, L. L. Chen, H. H. Zhang, X. Hu, W. Kong, D. Hu, Metabolism. Resveratrol improves insulin resistance of catch-up growth by increasing mitochondrial complexes and antioxidant function in skeletal muscle, 61(7), 954-965 (2012) [CrossRef] [PubMed] [Google Scholar]
  54. K. T. Lu, M. C. Ko, B. Y. Chen, et al. J. Agric. Food Chem. Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavenging, 56(16), 6910-6913 (2008) [CrossRef] [PubMed] [Google Scholar]
  55. S. Ferreira, F. Domingues, J. Sci. Food Agric. The antimicrobial action of resveratrol against Listeria monocytogenes in food‐based models and its antibiofilm properties, 96(13), 4531-4535 (2016) [CrossRef] [PubMed] [Google Scholar]
  56. D. Hwang, Y. H. Lim, Sci Rep. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression, 5, 10029 (2015) [CrossRef] [PubMed] [Google Scholar]
  57. M. M. Y. Chan, Biochem. Pharmacol. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin, 63(2), 99-104(2002) [CrossRef] [PubMed] [Google Scholar]
  58. J. Lee, D. G. Lee, Curr. Microbiol. Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans, 70(3), 383-389 (2015) [CrossRef] [PubMed] [Google Scholar]
  59. Y. J. Chun, S. Kim, D. Kim, S. K. Lee, F. P. Guengerich, Cancer Res. A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis, 61(22), 8164-8170 (2001) [Google Scholar]
  60. Y. J. Chun, Y. K. Oh, B. J. Kim, D. Kim, S. S. Kim, H. K. Choi, M. Y. Kim, Toxicol. Lett. Potent inhibition of human cytochrome P450 1B1 by tetramethoxystilbene, 189(1), 84-89 (2009) [CrossRef] [PubMed] [Google Scholar]
  61. W.Nawaz, Z. Zhou, S. Deng, X. Ma, X. Ma, C. Li, X. Shu, Nutrients. Therapeutic versatility of resveratrol derivatives, 9(11), 1188 (2017) [Google Scholar]
  62. A. R. Hussain, S. Uddin, R. Bu, O. S. Khan, S. O. Ahmed, M. Ahmed, K. S. Al-Kuraya, PLoS One. Resveratrol suppresses constitutive activation of AKT via generation of ROS and induces apoptosis in diffuse large B cell lymphoma cell lines., 6(9), e24703 (2011) [Google Scholar]
  63. A. B. Tino, K. Chitcholtan, P. H. Sykes, A. Garrill, J. Ovarian Res. Resveratrol and acetyl-resveratrol modulate activity of VEGF and IL-8 in ovarian cancer cell aggregates via attenuation of the NF-κB protein, 9(1), 1-12 (2016) [CrossRef] [PubMed] [Google Scholar]
  64. M. A. Markus, B. J. Morris, Clin. Interv. Aging. Resveratrol in prevention and treatment of common clinical conditions of aging, 3(2), 331 (2008) [PubMed] [Google Scholar]
  65. L. M. Hung, J. K. Chen, S. S. Huang, R. S. Lee, M. J. Su, Cardiovasc. Res. Cardioprotective effect of resveratrol, a natural antioxidant derived from grapes, 47(3), 549-555 (2000) [CrossRef] [PubMed] [Google Scholar]
  66. S. Fukuda, S. Kaga, L. Zhan, D. Bagchi, D. K. Das, A. Bertelli, N. Maulik, Cell Biochem. Biophys. Resveratrol ameliorates myocardial damage by inducing vascular endothelial growth factor-angiogenesis and tyrosine kinase receptor Flk-1, 44(1), 43-49 (2006) [CrossRef] [PubMed] [Google Scholar]
  67. K. H. Jung, J. H. Lee, J. W. Park, C. H. T. Quach, S. H. Moon, Y. S. Cho, K. H. Lee, Int. J. Pharm. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo, 478(1), 251-257 (2015) [CrossRef] [PubMed] [Google Scholar]
  68. V. Sanna, I. A. Siddiqui, M. Sechi, H. Mukhtar, Mol. Pharm. Resveratrol-Loaded Nanoparticles Based on Poly (epsilon-caprolactone) and Poly (d, l-lactic-co-glycolic acid)–Poly (ethylene glycol) Blend for Prostate Cancer Treatment, 10(10), 3871-3881 (2013) [CrossRef] [PubMed] [Google Scholar]
  69. L. Guo, Y. Peng, Y. Li, et al. Oncol. Lett. Cell death pathway induced by resveratrol-bovine serum albumin nanoparticles in a human ovarian cell line, 9(3), 1359-1363 (2015) [PubMed] [Google Scholar]
  70. M. Sessa, M. L. Balestrieri, G. Ferrari, et al. Food Chem. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems, 147, 42-50 (2014) [CrossRef] [PubMed] [Google Scholar]
  71. Y. Hemar, L. J. Cheng, C. M. Oliver, L. Sanguansri, M. Augustin, Food Biophys. Encapsulation of resveratrol using water-in-oil-in-water double emulsions, 5(2), 120-127 (2010) [Google Scholar]
  72. G. Davidov-Pardo, D. J. McClements, Food Chem. Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification, 167, 205-212 (2015) [CrossRef] [PubMed] [Google Scholar]
  73. E. H. Gokce, E. Korkmaz, E. Dellera, G. Sandri, M. C. Bonferoni, O. Ozer, Int. J. Nanomed. Resveratrol-loaded solid lipid nanoparticles versus nanostructured lipid carriers: evaluation of antioxidant potential for dermal applications, 7, 1841 (2012) [CrossRef] [Google Scholar]
  74. K. Teskač, J. Kristl, Int. J. Pharm. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol, 390(1), 61-69 (2010) [CrossRef] [PubMed] [Google Scholar]
  75. S. Kobierski, K.Ofori-Kwakye, R. H. Müller, C. M. Keck, Pharmazie. Resveratrol nanosuspensions for dermal application–production, characterization, and physical stability, 64(11), 741-747 (2009) [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.