Open Access
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00003
Number of page(s) 9
Published online 02 February 2021
  1. K.V. Kumar, R.K. Bai, Performance study on solar still with enhanced condensation, Desalination., 230, 51-61, (2008) [Google Scholar]
  2. Y. Sarray, N. Hidouri, A. Mchirgui, A.B. Brahim, Study of heat and mass transfer phenomena and entropy rate of humid air inside a passive solar still, Desalination, 409, 80-95, (2017) [Google Scholar]
  3. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Mariñas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature, 452, 301-310, (2008) [Google Scholar]
  4. B. Chaouchi, A. Zrelli, S. Gabsi, Desalination of brackish water by means of a parabolic solar concentrator, Desalination, 217, 118-126, (2007) [Google Scholar]
  5. A.-J.N. Khalifa, A.S. Al-Jubouri, M.K. Abed, An experimental study on modified simple solar stills, Energy Convers. Manage., 40, 1835-1847, (1999) [Google Scholar]
  6. N.E. Gharbi, H. Derbal, S. Bouaichaoui, N. Said, A comparative study between parabolic trough collector and linear Fresnel reflector technologies, Energy Procedia, 6, 565-572, (2011) [Google Scholar]
  7. A.B. Auti, Domestic Solar Water Desalination System, Energy Procedia, 14, 1774-1779, (2012) [Google Scholar]
  8. T. Arunkumara, R. Velraja, A. Ahsanc, A.J.N. Khalifad, S. Shamse, D. Denkenbergerf, R. Sathyamurthy, Effect of parabolic solar energy collectors for water distillation, Desalin. Water Treat., 57, 21234-21242, (2016) [Google Scholar]
  9. M. Bouzaid, O. Ansari, M. Taha,-Janan, M. Oubrek, Experimental and Theoretical Analysis of a Novel Cascade Solar Desalination Still, FDMP, 14, 177-200, (2018) [Google Scholar]
  10. M. Al,-harahsheh, M. Abu,-Arabi, H. Mousa, Z. Alzghoul, Solar desalination using solar still enhanced by external solar collector and PCM, Appl. Therm. Eng., 128, 1030-1040, (2018) [Google Scholar]
  11. S.E. Lachhab, A. Bliya, E. Al, Ibrahmi, L. Dlimi, Theoretical analysis and mathematical modeling of a solar cogeneration system in Morocco, AIMS Energy, 7, 743-759, (2019) [Google Scholar]
  12. M. Ghodbane, B. Boumeddane, S. Largot, Simulation Numérique d’un Concentrateur Cylindro-Parabolique en El Oued, Algérie, IJRER, 3, 68–74, (2015) [Google Scholar]
  13. A.F. García, E. Zarza, L. Valenzuela, M. Pérez, Parabolic-trough solar collectors and their applications, Renewable Sustainable Energy Rev., 14, 1695-1721, (2010) [Google Scholar]
  14. A. Hepbasli, Z. Alsuhaibani, A key review on present status and future directions of solar energy studies and applications in Saudi Arabia, Renewable Sustainable Energy Rev., 15, 5021-5050, (2011) [Google Scholar]
  15. M. Ghodbane, B. Boumeddane, A numerical analysis of the energy behavior of a parabolic trough concentrator, J. Fundam and Appl Sci., 8, 671, (2018) [Google Scholar]
  16. R.V. Dunkle, CSIRO (Australia), Solar water distillation: the roof type still and a multiple effect diffusion still. Melbourne: C.S.I.R.O., (1961) [Google Scholar]
  17. G.N. Tiwari, S.A. Lawrence, S.P. Gupta, Analytical study of multi-effect solar still, Energy Convers. Manage., 29, 259-263, (1989) [Google Scholar]
  18. S. Kumar, G.N. Tiwari, Estimation of convective mass transfer in solar distillation systems, Sol. Energy, 57, 459-464, (1996) [Google Scholar]
  19. S. Aggarwal, G.N. Tiwari, Convective mass transfer in a double-condensing chamber and a conventional solar still, Desalination, 115, 181-188, (1998) [Google Scholar]
  20. D.K. Dutt, A. Kumar, J.D. Anand, G.N. Tiwari, Performance of a double-basin solar still in the presence of dye, Appl. Energy, 32, 207-223, (1989) [Google Scholar]
  21. A. Johnson, L. Mu, Y.H. Park, D.J. Valles, H. Wang, P. Xu, K. Kota, S. Kuravi, A Thermal Model for Predicting the Performance of a Solar Still with Fresnel Lens, Water, 11, 1860, (2019) [Google Scholar]
  22. J.A. Duffie, W.A. Beckman, Solar engineering of thermal processes / John A. Duffie, William A. Beckman, 4th ed. Hoboken: John Wiley, (2013) [CrossRef] [Google Scholar]
  23. A.Z. Hafez, A. Soliman, K.A. El-Metwally, I.M. Ismail, Solar parabolic dish Stirling engine system design, simulation, and thermal analysis, Energy Convers. Manage., 126, 60-75, (2016) [Google Scholar]
  24. H. Aghaei, Zoori, F. Farshchi, Tabrizi, F. Sarhaddi, F. Heshmatnezhad, Comparison between energy and exergy efficiencies in a weir type cascade solar still, Desalination, 325, 113-121, (2013) [Google Scholar]
  25. M. Šúri, T.A. Huld, E.D. Dunlop, M. Albuisson, L. Wald, Online Data and Tools for Estimation of Solar Electricity in A frica:the PVGIS Approach, Proceedings from 21st European Photovoltaic Solar Energy Conference and Exhibition, 4-8 October 2006, Dresden, Germany (2006) [Google Scholar]
  26. P.G. Kale, R. Tarai, Development of Rasterized Map using PVGIS for Assessment of Solar PV Energy Potential of Odisha, IJRER, 6, 61-73, (2016) [Google Scholar]
  27. R.P. Kenny, T.A. Huld, S. Iglesias, Energy Rating of PV Modules based on PVGIS Irradiation and Temperature Database, 21st European Photovoltaic Solar Energy Conference, 4-8 September 2006, Dresden, Germany (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.