Open Access
Issue
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00009
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202123400009
Published online 02 February 2021
  1. N. Diaf, M. Bouchaour, L. Merad, B. Benyoucef, .Paramètres influençant la dispersion des polluants gazeux. RevEnergRen : ICPWE 139-142 (2003) [Google Scholar]
  2. B. Benkoussas, et al. Etude de la dispersion atmosphérique des effluents émis par les cheminées de la cimenterie de Meftah. J Sci Res N° 0 . 1:39-43 (2010) [Google Scholar]
  3. M.E. Frankenberg & T.T. Smith . Improvement of Ambient Sulfur Dioxide Concentrations by Conversion from Low to High Stacks. J Air Pollut Control Assoc . 25:595-601(1975) [Google Scholar]
  4. D.J. Wilson. Turbulent dispersion in atmospheric shear flow and its wind tunnel simulation, Von Karman Institute for fluid dynamics, Technical note 76. (1971) [Google Scholar]
  5. J.H. Vincent. Model experiments on the nature of air pollution transport near buildings. Atmos Environ. 11:765-774 (1977) [Google Scholar]
  6. M. Menaouer,. Modélisation numérique de l’évolution de la dispersion des polluants émis par une cheminée. Université des Sciences et de la Technologie Mohammed BOUDIAF-Oran (2013) [Google Scholar]
  7. A.C. Flowe, A. Kumar,. Analysis of velocity fields and dispersive cavity parameters as a function of building width to building height ratio using a 3-D computer model for squat buildings. J Wind Eng Ind Aerodyn. 86:87-122 (2000) [Google Scholar]
  8. C. Liu, & G. Ahmadi,. Transport and deposition of particles near a building model. Build Environ. 41:828-836 (2006) [Google Scholar]
  9. H.A. Olvera, A.R. Choudhuri, W.W. Li. Effects of plume buoyancy and momentum on the near-wake flow structure and dispersion behind an idealized building. J Wind Eng Ind Aerodyn. 96:209-228 (2008) [Google Scholar]
  10. S. DiSabatino, et al. Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models. Atmos Environ. 41:8316-8329 (2007) [Google Scholar]
  11. Y. Tominaga, & T. Stathopoulos,. Numerical simulation of dispersion around an isolated cubic building: Comparison of various types of k-ε models. Atmos Environ. 43:3200-3210 (2009) [Google Scholar]
  12. B.E. Launder, D.B. Spaliding .The Numerical Computation of Turbulent Flows. Comput Methods Appl Mech Eng. 3:269-289 (1974) [Google Scholar]
  13. S.V. Patankar .Numerical heat transfer and fluid flow. McGraw-Hill B Company, New York (1980) [Google Scholar]
  14. S.N. Mahjoub, H. Mhiri, G. Le Palec, PH. Bournot,. Experimental and numerical analysis of pollutant dispersion from a chimney. Atmos Environ. 39:1727-1738 (2005) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.