Open Access
Issue
E3S Web Conf.
Volume 234, 2021
The International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES2020)
Article Number 00064
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202123400064
Published online 02 February 2021
  1. J. Stilgoe, ‘Machine learning, social learning and the governance of self-driving cars’, Social Studies of Science, p. 32 [Google Scholar]
  2. A. Barodi, A. Bajit, M. Benbrahim, and A. Tamtaoui, ‘An Enhanced Approach in Detecting Object Applied to Automotive Traffic Roads Signs’, in 2020 IEEE 6th International Conference on Optimization and Applications (ICOA), Beni Mellal, Morocco, Apr. 2020, pp. 1-6, doi: 10.1109/ICOA49421.2020.9094457 [Google Scholar]
  3. S. Shi, Q. Wang, P. Xu, and X. Chu, ‘Benchmarking State-of-the-Art Deep Learning Software Tools’, in 2016 7th International Conference on Cloud Computing and Big Data (CCBD), Macau, China, Nov. 2016, pp. 99-104, doi: 10.1109/CCBD.2016.029 [Google Scholar]
  4. J. Chi, E. Walia, P. Babyn, J. Wang, G. Groot, and M. Eramian, ‘Thyroid Nodule Classification in Ultrasound Images by Fine-Tuning Deep Convolutional Neural Network’, J Digit Imaging, Vol. 30, no. 4, pp. 477-486, Aug. 2017, doi: 10.1007/s10278-017-9997-y [Google Scholar]
  5. G. Liang and L. Zheng, ‘A transfer learning method with deep residual network for pediatric pneumonia diagnosis’, Computer Methods and Programs in Biomedicine, Vol. 187, p. 104964, Apr. 2020, doi: 10.1016/j.cmpb.2019.06.023 [Google Scholar]
  6. K. Gopalakrishnan, S.K. Khaitan, A. Choudhary, and A. Agrawal, ‘Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection’, Construction and Building Materials, Vol. 157, pp. 322-330, Dec. 2017, doi: 10.1016/j.conbuildmat.2017.09.110 [Google Scholar]
  7. A. Paszke et al., ‘PyTorch: An Imperative Style, High-Performance Deep Learning Library’, p. 12 [Google Scholar]
  8. A. Bajit, M. Nahid, A. Tamtaoui, and M. Benbrahim, ‘A Psychovisual Optimization of Wavelet Foveation-Based Image Coding and Quality Assessment Based on Human Quality Criterions’, Adv. sci. technol. eng. syst. j., Vol. 5, no. 2, pp. 225-234, 2020, doi: 10.25046/aj050229 [Google Scholar]
  9. Abderrahim. Bajit, Mohammed. Najid, Ahmed. Tamtaoui, and Abdellah. Lassioui, ‘A Perceptually Optimized Embedded Image Coder and Quality Assessor Based Both on Visual Tools’, Adv. sci. technol. eng. syst. j., Vol. 4, no. 4, 2019, doi: 10.25046/aj040428 [Google Scholar]
  10. S. De, A. Mukherjee, and E. Ullah, ‘Convergence guarantees for RMSProp and ADAM in non-convex optimization and an empirical comparison to Nesterov acceleration’, arXiv:1807.06766 [cs, math, stat], Nov. 2018, Accessed: Aug. 08, 2020. [Online] [Google Scholar]
  11. M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, ‘Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network’, IEEE Trans. Med. Imaging, Vol. 35, no. 5, pp. 1207-1216, May 2016, doi: 10.1109/TMI.2016.2535865 [Google Scholar]
  12. A.W. Senior et al., ‘Improved protein structure prediction using potentials from deep learning’, Nature, Vol. 577, no. 7792, pp. 706-710, Jan. 2020, doi: 10.1038/s41586-019-1923-7 [Google Scholar]
  13. D.P. Kingma and J. Ba, ‘Adam: A Method for Stochastic Optimization’, arXiv:1412.6980 [cs], Jan. 2017, Accessed: Aug. 08, 2020. [Online]. Available: http://arxiv.org/abs/1412.6980 [Google Scholar]
  14. G. Pandey, A. Baranwal, and A. Semenov, ‘Identifying Images with Ladders Using Deep CNN Transfer Learning’, in Intelligent Decision Technologies 2019, Vol. 142, I. Czarnowski, R.J. Howlett, and L.C. Jain, Eds. Singapore: Springer Singapore, 2020, pp. 143-153 [Google Scholar]
  15. K. He, X. Zhang, S. Ren, and J. Sun, ‘Deep Residual Learning for Image Recognition’, arXiv:1512.03385 [cs], Dec. 2015, Accessed: Aug. 08, 2020. [Online]. Available: http://arxiv.org/abs/1512.03385 [Google Scholar]
  16. D. Li and Q. Chen, ‘Deep Reinforced Attention Learning for Quality-Aware Visual Recognition’, arXiv:2007.06156 [cs], Jul. 2020, Accessed: Aug. 08, 2020 [Google Scholar]
  17. J. Cohen, ‘A Coefficient of Agreement for Nominal Scales’, Educational and Psychological Measurement, Vol. 20, no. 1, pp. 37-46, Apr. 1960, doi: 10.1177/001316446002000104 [Google Scholar]
  18. A. Barodi, A. Bajit, M. Benbrahim and A. Tamtaoui "Applying Real-Time Object Shapes Detection To Automotive Traffic Roads Signs.," 2020 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), Morocco, Kenitra, 2020, pp. 1-6, --Proceeding [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.