Open Access
Issue
E3S Web Conf.
Volume 328, 2021
International Conference on Science and Technology (ICST 2021)
Article Number 02001
Number of page(s) 4
Section Electrical, Intrumentation and control, Dynamic Electricity
DOI https://doi.org/10.1051/e3sconf/202132802001
Published online 06 December 2021
  1. Z. K. Erricson, A. Elia Kendek, and M. Dringhuzen J., “Rancang Bangun Penyiram Tanaman Berbasis Arduino Uno Menggunakan Sensor Kelembaban YL-39 Dan YL-69,” J. Tek. Elektro dan Komput., vol. 7, no. 3, (2018). [Google Scholar]
  2. D. Susilokarti e t a l ., “IDENTIFIKASI PERUBAHAN IKLIM BERDASARKAN DATA CURAH HUJAN DI WILAYAH SELATAN JATILUHUR KABUPATEN SUBANG, JAWA BARAT,” vol. 35, no. 1, pp. 98–105, (2015). [Google Scholar]
  3. W. Christian Wely, D. UrParenden, and S. Peter, “ANALISIS UNJUK KERJA KINCIR ANGIN MODEL P-200W DAN KINCIR ANGIN MODEL JPS-200 DI MERAUKE,” vol. 1, no. 1, pp. 21–24, (2018). [Google Scholar]
  4. R. A. Nugrahapsari and I. W. Arsanti, “ANALISIS VOLATILITAS HARGA CABAI KERITING DI INDONESIA DENGAN PENDEKATAN ARCH GARCH Analizing Curly Chili Price Volatility in Indonesia Using the ARCH GARCH Approach,” vol. 36, no. 1, pp. 25–37, (2019). [Google Scholar]
  5. R. Rudi, “PERTUMBUHAN DAN HASIL TUJUH GENOTIPE CABAI RAWIT HIBRIDA SPESIES Capsicum annuum L. DI DATARAN RENDAH,” Bengkulu University, (2017). [Google Scholar]
  6. M. Rizky and A. Saputra, “RANCANG BANGUN SISTEM PENYIRAM PADA TANAMAN CABAI BERBASIS ATMEGA16,” (2018). [Google Scholar]
  7. S. Suhendri, B. Irawan, and T. Rismawan, “SISTEM PENGONTROLAN KELEMBABAN TANAH PADA MEDIA TANAM CABAI RAWIT MENGGUNAKAN MIKROKONTROLER ATMEGA16 DENGAN METODE PD (PROPORTIONAL & DERIVATIVE),” J. Coding, Sist. Komput. Untan, vol. 03, no. 3, pp. 45–56, (2015). [Google Scholar]
  8. A. Ferdianto, F. Teknik, and U. B. Luhur, “Pengendalian kelembaban tanah pada tanaman cabai berbasis fuzzy logic,” vol. 1, no. April, pp. 86–91, (2018). [Google Scholar]
  9. S. M. Dewi and M. Syukur, “Interaksi Genotipe x Lingkungan Hasil dan Komponen Hasil 14 Genotipe Tomat di Empat Lingkungan Dataran Rendah Genotype x Environment Interaction of Yield and Yield Components of 14 Tomato Genotypes in Four Lowland Environments,” vol. 43, no. 1, pp. 59–65, (2015). [Google Scholar]
  10. M. Rizky, “PEMODELAN SMART PROFILE GREENHOUSE BERBASIS NEURAL NETWORK PEMODELAN SMART PROFILE GREENHOUSE,” (2017). [Google Scholar]
  11. D. P. W. Hardi and H. Afandi, “Prototype Pengukur Kelembaban Tanah Dan Intensitas Cahaya Berbasis Arduino Uno,” Semin. Nas. Edusainstek, pp. 115–119, (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.