Open Access
E3S Web Conf.
Volume 328, 2021
International Conference on Science and Technology (ICST 2021)
Article Number 02005
Number of page(s) 7
Section Electrical, Intrumentation and control, Dynamic Electricity
Published online 06 December 2021
  1. D. C. Luvizon, B. T. Nassu, and R. Minetto, “A Video-Based System for Vehicle Speed Measurement in Urban Roadways,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 6, pp. 1393–1404, Jun. (2017). [Google Scholar]
  2. A. J. Fernández-Ares, A. M. Mora, S. M. Odeh, P. García-Sánchez, and M. G. Arenas, “Wireless monitoring and tracking system for vehicles: A study case in an urban scenario,” Simul. Model. Pract. Theory, vol. 73, pp. 22–42, (2017). [CrossRef] [Google Scholar]
  3. K. (Kate) Hyun, A. Tok, and S. G. Ritchie, “Long distance truck tracking from advanced point detectors using a selective weighted Bayesian model,” Transp. Res. Part C Emerg. Technol., vol. (82), pp. 24–42, (2017). [CrossRef] [Google Scholar]
  4. S. Khakpour, R. W. Pazzi, and K. El-Khatib, “Using clustering for target tracking in vehicular ad hoc networks,” Veh. Commun., vol. 9, pp. 83–96, (2017). [Google Scholar]
  5. M. K. Saini and S. Saini, “Multiwavelet Transform Based License plate Detection,” J. Vis. Commun. Image Represent., p. , (2017). [Google Scholar]
  6. M. Anandhalli and V. P. Baligar, “A novel approach in real-time vehicle detection and tracking using Raspberry Pi,” Alexandria Eng. J., (2017). [Google Scholar]
  7. R. M. Khoshki and S. Ganesan, “Improved Automatic License Plate Recognition (ALPR) system based on single pass Connected Component Labeling (CCL) and reign property function,” (2015), pp. 426–431. [Google Scholar]
  8. Y. Chang, Z. Su, and L. Qian-Yu, “A New Traffic Incident Detection Method Under Low-Volume Condition Based On Automatic Vehicle Identification,” in 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery, (2012), pp. 2853–2859. [CrossRef] [Google Scholar]
  9. J. A. Khan and M. A. Shah, “Car License plate Recognition (CNPR) system using multiple template matching,” in 2016 22nd International Conference on Automation and Computing (ICAC), (2016), pp. 290–295. [CrossRef] [Google Scholar]
  10. M. Zhu, C. Liu, J. Wang, X. Wang, and Y. Han, “A Service-Friendly Approach to Discover Traveling Companions Based on ANPR Data Stream,” in 2016 IEEE International Conference on Services Computing (SCC), (2016), pp. 171–178. [CrossRef] [Google Scholar]
  11. A. Jain and J. Sharma, “Classification and interpretation of characters in multi-application OCR system,” in 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC), (2014), pp. 1–6. [Google Scholar]
  12. S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic License Plate Recognition (ALPR): A State-of-the-Art Review,” Circuits Syst. Video Technol. IEEE Trans., vol. 23, no. 2, pp. 311–325, Feb. (2013). [CrossRef] [Google Scholar]
  13. C. M. Costa, I. S. Silva, R. D. de Sousa, R. A. Hortegal, and C. D. M. Regis, “The association between reconstructed phase space and Artificial Neural Networks for vectorcardiographic recognition of myocardial infarction,” J. Electrocardiol., vol. 51, no. 3, pp. 443–449, (2018). [CrossRef] [Google Scholar]
  14. T. Akter and S. Desai, “Developing a predictive model for nanoimprint lithography using artificial neural networks,” Mater. Des., vol. 160, pp. 836–848, (2018). [CrossRef] [Google Scholar]
  15. I. Kucukoglu, H. Atici-Ulusu, T. Gunduz, and O. Tokcalar, “Application of the artificial neural network method to detect defective assembling processes by using a wearable technology,” J. Manuf. Syst., vol. 49, pp. 163–171, (2018). [CrossRef] [Google Scholar]
  16. P. Sudha, D. Ramyachitra, and P. Manikandan, “Enhanced Artificial Neural Network for Protein Fold Recognition and Structural Class Prediction,” Gene Reports, vol. 12, pp. 261–275, (2018). [CrossRef] [Google Scholar]
  17. S. van Cranenburgh and A. Alwosheel, “An artificial neural network based approach to investigate travellers’ decision rules,” Transp. Res. Part C Emerg. Technol., vol. 98, pp. 152–166, (2019). [CrossRef] [Google Scholar]
  18. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501, (2006). [CrossRef] [Google Scholar]
  19. G.-B. Huang, M.-B. Li, L. Chen, and C.-K. Siew, “Incremental extreme learning machine with fully complex hidden nodes,” Neurocomputing, vol. 71, no. 4, pp. 576–583, (2008). [CrossRef] [Google Scholar]
  20. K. Demertzis and L. Iliadis, “Bio-inspired hybrid intelligent method for detecting android malware,” in Knowledge, Information and Creativity Support Systems, Springer, (2016), pp. 289–304. [CrossRef] [Google Scholar]
  21. G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a new learning scheme of feedforward neural networks,” in Neural Networks, 2004. Proceedings. 2004 IEEE International Joint Conference on, (2004), vol. 2, pp. 985–990. [CrossRef] [Google Scholar]
  22. D. Lin, F. Lin, Y. Lv, F. Cai, and D. Cao, “Chinese Character CAPTCHA Recognition and performance estimation via deep neural network,” Neurocomputing, vol. 288, pp. 11–19, (2018). [CrossRef] [Google Scholar]
  23. H. M. Alyahya, M. K. Alharthi, A. M. Alattas, and V. Thayananthan, “Saudi License Plate Recognition System Using Artificial Neural Network Classifier,” in 2017 International Conference on Computer and Applications (ICCA), (2017), pp. 220–226. [CrossRef] [Google Scholar]
  24. W. C. Liu and C. H. Lin, “A hierarchical license plate recognition system using supervised K-means and Support Vector Machine,” in 2017 International Conference on Applied System Innovation (ICASI), (2017), pp. 1622–1625. [CrossRef] [Google Scholar]
  25. C. Gou, K. Wang, Y. Yao, and Z. Li, “Vehicle License Plate Recognition Based on Extremal Regions and Restricted Boltzmann Machines,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 4, pp. 1096–1107, Apr. (2016). [CrossRef] [Google Scholar]
  26. S. M. Silva and C. R. Jung, “Real-Time Brazilian License Plate Detection and Recognition Using Deep Convolutional Neural Networks,” in 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), (2017), pp. 55–62. [Google Scholar]
  27. D. N. T. How and K. S. M. Sahari, “Character recognition of Malaysian vehicle license plate with deep convolutional neural networks,” in 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), (2016), pp. 1–5. [Google Scholar]
  28. L. Teo and F. Wong, “Smearing algorithm for vehicle parking management system,” in Proceedings of the 2nd Seminar on Engineering and Information Technololgy, (2009), pp. 331–337. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.