Open Access
E3S Web Conf.
Volume 328, 2021
International Conference on Science and Technology (ICST 2021)
Article Number 05007
Number of page(s) 4
Section Material Theory, Modeling & Characterisation, System Manufacture, Dynamic System
Published online 06 December 2021
  1. M. Z. Mahasin, Y. Rochwulaningsih, and S. T. Sulistiyono, “Coastal Ecosystem as Salt Production Centre in Indonesia,” E3S Web Conf., vol. 202, (2020), doi: 10.1051/e3sconf/202020207042. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  2. M. Gozan et al., “High-Productivity Traditional Bali Palung Salt Method for Small Production Fields,” vol. 48, no. 6, (2021). [Google Scholar]
  3. Y. Rochwulaningsih et al., “Traditional knowledge system in palung salt-making in Bali Island,” J. Ethn. Foods, vol. 6, no. 1, pp. 4–10, (2019), doi: 10.1186/s42779-019-0018-2. [CrossRef] [Google Scholar]
  4. M. M. Abu-Khader, “Viable engineering options to enhance the NaCl quality from the Dead Sea in Jordan,” J. Clean. Prod., vol. 14, no. 1, pp. 80–86, (2006), doi: 10.1016/j.jclepro.2004.11.005. [CrossRef] [Google Scholar]
  5. Z. Li, R. Li, X. Liu, C. Zhao, and Y. Tian, “Application and Product Standard of Purified Crystalline Salt from Desulfurization Wastewater of Thermal Power Plant,” E3S Web Conf., vol. 136, (2019), doi: 10.1051/e3sconf/201913606019. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  6. K. G. Nayar et al., “Cost and energy requirements of hybrid RO and ED brine concentration systems for salt production,” Desalination, vol. 456, no. November 2018, pp. 97–120, (2019), doi: 10.1016/j.desal.2018.11.018. [CrossRef] [Google Scholar]
  7. J. Zhao, H. Cheng, X. Wang, W. Cheng, and F. Cheng, “Experimental investigation and cost assessment of the salt production by solar assisted evaporation of saturated brine,” Chinese J. Chem. Eng., vol. 26, no. 4, pp. 701–707, (2018), doi: 10.1016/j.cjche.2017.08.016. [CrossRef] [Google Scholar]
  8. M. Ahmed et al., “Feasibility of salt production from inland RO desalination plant reject brine: A case study,” Desalination, vol. 158, no. 1–3, pp. 109–117, (2003), doi: 10.1016/S0011-9164(03)00441-7. [CrossRef] [Google Scholar]
  9. O. Moiambo and F. Ferreira, “Modelling Faecal Sludge Dewatering Processes in Drying Beds Based on the Results from Tete , Mozambique,” (2021). [Google Scholar]
  10. M. U. Hasan et al., “Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review,” J. Food Process. Preserv., vol. 43, no. 12, pp. 1–15, (2019), doi: 10.1111/jfpp.14280. [CrossRef] [Google Scholar]
  11. B. Ramírez-Pulido, C. Bas-Bellver, N. Betoret, C. Barrera, and L. Seguí, “Valorization of Vegetable Fresh-Processing Residues as Functional Powdered Ingredients. A Review on the Potential Impact of Pretreatments and Drying Methods on Bioactive Compounds and Their Bioaccessibility,” Front. Sustain. Food Syst., vol. 5, no. April, (2021), doi: 10.3389/fsufs.2021.654313. [Google Scholar]
  12. M. C. Karam, J. Petit, D. Zimmer, E. Baudelaire Djantou, and J. Scher, “Effects of drying and grinding in production of fruit and vegetable powders: A review,” J. Food Eng., vol. 188, pp. 32–49, (2016), doi: 10.1016/j.jfoodeng.2016.05.001. [CrossRef] [Google Scholar]
  13. L. Van ’T Hag, J. Danthe, S. Handschin, G. P. Mutuli, D. Mbuge, and R. Mezzenga, “Drying of African leafy vegetables for their effective preservation: The difference in moisture sorption isotherms explained by their microstructure,” Food Funct., vol. 11, no. 1, pp. 955–964, (2020), doi: 10.1039/c9fo01175g. [CrossRef] [PubMed] [Google Scholar]
  14. N. Amir, M. Efendy, Y. J. Yoo, and M. Gozan, “Improved Salt Quality and Reduced Energy Consumption via Hot Air Drying,” Int. J. Technol., vol. 12, no. April, pp. 592–601, (2021), doi: 10.14716/ijtech.v12i3.4853. [CrossRef] [Google Scholar]
  15. F. Cheng, X. Zhou, and Y. Liu, “Methods for Improvement of the Thermal Efficiency during Spray Drying,” E3S Web Conf., vol. 53, pp. 4–6, (2018), doi: 10.1051/e3sconf/20185301031. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  16. A. E. Stępień, J. Gorzelany, N. Matłok, K. Lech, and A. Figiel, “The effect of drying methods on the energy consumption, bioactive potential and colour of dried leaves of Pink Rock Rose (Cistus creticus),” J. Food Sci. Technol., vol. 56, no. 5, pp. 2386–2394, (2019), doi: 10.1007/s13197-019-03656-2. [CrossRef] [PubMed] [Google Scholar]
  17. E. Delgado-Plaza, M. Quilambaqui, J. Peralta-Jaramillo, H. Apolo, and B. Velázquez-Martí, “Estimation of the energy consumption of the rice and corn drying process in the equatorial zone,” Appl. Sci., vol. 10, no. 21, pp. 1–21, (2020), doi: 10.3390/app10217497. [CrossRef] [Google Scholar]
  18. C. Kapseu, D. N. Bup, C. Tchiegang, C. F. Abi, F. Broto, and M. Parmentier, “Effect of particle size and drying temperature on drying rate and oil extracted yields of Buccholzia coriacea (MVAN) and Butyrospermum parkii ENGL,” International Journal of Food Science and Technology, vol. 42, no. 5. pp. 573–578, (2007), doi: 10.1111/j.1365-2621.2006.01277.x. [CrossRef] [Google Scholar]
  19. S. Pusat, M. T. Akkoyunlu, H. H. Erdem, and I. Teke, “Effects of bed height and particle size on drying of a Turkish lignite,” Int. J. Coal Prep. Util., vol. 35, no. 4, pp. 196–205, (2015), doi: 10.1080/19392699.2015.1009051. [CrossRef] [Google Scholar]
  20. Z. Darmawan, A. Altway, and Susianto, “Modeling and Simulation of Salt Drying Using Rotary Dryer,” Adv. Sci. Lett., vol. 23, no. 6, pp. 5653–5656, (2017), doi: [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.