Open Access
Issue
E3S Web Conf.
Volume 329, 2021
4th International Conference on Green Energy and Sustainable Development (GESD 2021)
Article Number 01005
Number of page(s) 4
DOI https://doi.org/10.1051/e3sconf/202132901005
Published online 09 December 2021
  1. D. Mudgil, S. Barak and B.S.J. Khatkar. Guar gum: processing, properties and food applications-A Review. Journal of Food Science and Technology, 2014, 51(3): 409–418. 12, [CrossRef] [PubMed] [Google Scholar]
  2. Y. Tang, H. Ren, P. Yang, et al. Treatment of fracturing fluid waste by Fenton reaction using transition metal complexes catalyzes oxidation of hydroxypropyl guar gum at high pH, Environmental Chemistry Letters, 2019, 17: 559–564. [CrossRef] [Google Scholar]
  3. M. Mei, J. Yang, X. Zhang, et al. Cysteine Fe(III) catalyzed oxidation of common polymer used in oilfield by H2O2 in a wide pH range, Russian Journal of Applied Chemistry, 2019, 92(1): 134–139. [Google Scholar]
  4. Babuponnusami, K. Muthukumar. A review on Fenton and improvements to the Fenton process for wastewater treatment, Journal of Environmental Chemical Engineering, 2014, 2(1): 557–572. [CrossRef] [Google Scholar]
  5. Y. Tang, L. Zhou, Y. Xue, et al. Preparation of nanoscale zero-valent metal for catalyzed clean oxidation of hydroxypropyl guar gum at neutral pH value, Desalination and Water Treatment, 2020, 197: 328–334. [CrossRef] [Google Scholar]
  6. V. Arantes, C. Baldocchi and A.M.F. Milagres. Degradation and decolorization of a biodegradableresistant polymeric dye by chelator-mediated Fenton reactions, Chemosphere, 2006, 63(10): 0–1772. [Google Scholar]
  7. L. Zhou, M. Slaný, B. Bai, et al. Enhanced removal of sulfonated lignite from oil wastewater with multidimensional MgAl-LDH nanoparticles, Nanomaterials, 2021, 11, 861. [CrossRef] [PubMed] [Google Scholar]
  8. Y. Tang, Z. Li, Z. Xu, et al Synthesis of hierarchical MgO based on a cotton template and its adsorption properties for efficient treatment of oilfield wastewater, RSC Advance, 2020, 10: 28695–28704. [CrossRef] [Google Scholar]
  9. W. Chu, K.H. Chan, C.Y. Kwan, et al. Degradation of atrazine by modified stepwise-Fenton’s processes, Chemosphere, 2007, 67(4): 0–761. [Google Scholar]
  10. Goi, Y. Veressinina, M. Trapido Degradation of salicylic acid by Fenton and modified Fenton treatment, Chemical Engineering Journal, 2008, 143(1-3): 1–9. [CrossRef] [Google Scholar]
  11. M. Trapido, N. Kulik, A. Goi, et al. Fenton treatment efficacy for the purification of different kinds of wastewater, Water Science & Technology, 2009, 60(7): 1795–1801. [CrossRef] [PubMed] [Google Scholar]
  12. N. Dulova, M. Trapido, & A. Dulov Catalytic degradation of picric acid by heterogeneous Fentonbased processes, Environmental Technology, 2011, 32(4),439–446. [CrossRef] [PubMed] [Google Scholar]
  13. F.L.Y. Lam, A.C.K. Yip, & X. Hu Copper/mcm-41 as a highly stable and pH-insensitive heterogeneous photo-Fenton-like catalytic material for the abatement of organic wastewater, Industrial & Engineering Chemistry Research, 2007, 46(10),3328–3333. [CrossRef] [Google Scholar]
  14. H. Iboukhoulefa, A. Amraneb, H. Kadia Removal of phenolic compounds from olive mill wastewater by a Fenton-like system H2O2/Cu(II)-thermodynamic and kinetic modeling, Desalination & Water Treatment, 2016, 57(4): 1874–1879. [CrossRef] [Google Scholar]
  15. H.J. Lee, H. Lee, & C. Lee Degradation of diclofenac and carbamazepine by the copper(II)-catalyzed dark and photo-assisted Fenton-like systems, The Chemical Engineering Journal, 2014, 245: 258–264. [CrossRef] [Google Scholar]
  16. J. Maekawa, K. Mae, H. Nakagawa. Fenton-Cu2+ system for phenol mineralization, Journal of Environmental Chemical Engineering, 2014, 2(3): 1275–1280. [CrossRef] [Google Scholar]
  17. X. Xiang, L. He, Y. Yang, et al. A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran, Catalysis Letters, 2011, 141(5): 735–741. [CrossRef] [Google Scholar]
  18. Y. Tang, L. Zhou, Z. Xu, et al. Heterogeneous degradation of oil field additives by Cu(II) complexactivated persulfate oxidation, Environmental Progress & Sustainable Energy, 2020, e13562. [Google Scholar]
  19. Y. Tang, H. Ren, P. Yang, et al. Catalytic oxidation of polymers used in oilfield by metal-1,2-benzenediol complex, Desalination and Water Treatment, 2018, 120: 304–310. [CrossRef] [Google Scholar]
  20. H. Gu, X. Tang, R.Y. Hong. Ubbelohde viscometer measurement of water-based Fe3O4 magnetic fluid prepared by coprecipitation, Journal of Magnetism & Magnetic Materials, 2013, 348(12): 88–92. [CrossRef] [Google Scholar]
  21. N. Wang, T. Zheng, G. Zhang, et al. A review on Fenton-like processes for organic wastewater treatment, Journal of Environmental Chemical Engineering, 2016, 4(1): 762–787. [CrossRef] [Google Scholar]
  22. G. Wei, Y. Li, S. Cai, et al. Photo-Fenton degradation of ethyl xanthate catalyzed by bentonite-supported Fe(II)/phosphotungstic acid under visible light irradiation, Water Science & Technology, 2018, 2017(2): wst2018174. [Google Scholar]
  23. Y. Tang, H. Liu, L. Zhou, et al. Enhanced Fenton oxidation of hydroxypropyl guargum catalyzed by EDTA-metal complexes in a wide pH range. Water Science and Technology, 2019, 79(9): 1667–1674. [CrossRef] [PubMed] [Google Scholar]
  24. L.I. Enhui, J. Xinyao, W. Chenge, et al. Degradation Kinetics and Stability of Anthocyanins from Blueberry, Food Science, 2018. [Google Scholar]
  25. A.O. lebuegu, C.P. Ezenwa. Removal of Endocrine Disrupting Chemicals in Wastewater Treatment by Fenton-Like Oxidation, Water, Air & Soil Pollution, 2011, 217(1-4): 13–220. [Google Scholar]
  26. L. Zhou, Z. Xu, J. Zhang, et al. Effective degradation of hydroxypropyl guar gum at wide pH range by heterogeneous Fenton-like using supported zerovalent copper, Water Science and Technology, 2020, 82, 1635-1642. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.