Open Access
Issue
E3S Web Conf.
Volume 329, 2021
4th International Conference on Green Energy and Sustainable Development (GESD 2021)
Article Number 01083
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202132901083
Published online 09 December 2021
  1. Housner, G. W. (1952). Bending vibrations of a pipe line containing flowing fluid. Journal of Applied Mechanics, 19(2),205-208. [CrossRef] [Google Scholar]
  2. Jia, Y., Madeira, R. E., & Just-Agosto, F. (2005). Finite element formulation and vibration frequency analysis of a fluid filled pipe. In ASME International Mechanical Engineering Congress and Exposition (Vol.42282, pp. 127-132). [Google Scholar]
  3. Sutar, S., Madabhushi, R., & Poosa, R. B. (2016). Finite element analysis of piping vibration with guided supports. Int. J. Mech. Eng. Autom, 3(3),96-106. [Google Scholar]
  4. Irie, T., Yamada, G., & Takahashi, I. (1980). Vibration and stability of a non-uniform Timoshenko beam subjected to a follower force. Journal of Sound and Vibration, 70(4),503-512. [CrossRef] [Google Scholar]
  5. Lesmez, M. W., Wiggert, D. C., & Hatfield, F. J. (1990). Modal analysis of vibrations in liquid-filled piping systems. Journal of Fluids Engineering, 112(3),311-318. [CrossRef] [Google Scholar]
  6. Li, Q. S., Yang, K., Zhang, L., & Zhang, N. (2002). Frequency domain analysis of fluid–structure interaction in liquid-filled pipe systems by transfer matrix method. International Journal of Mechanical Sciences, 44(10),2067-2087. [CrossRef] [Google Scholar]
  7. Liu, J., He, X., Liu, Q., Naibin, J., & Chen, H. (2014). Vibration-modal analysis model for multi-span pipeline with different support conditions. Computer Modelling & New Technologies, 18(5),14-18. [Google Scholar]
  8. Li, S. J., Liu, G. M., & Kong, W. T. (2014). Vibration analysis of pipes conveying fluid by transfer matrix method. Nuclear Engineering and Design, 266, 78-88. [CrossRef] [Google Scholar]
  9. Li, S., Karney, B. W., & Liu, G. (2014). Application of transfer matrix method to dynamic analysis of pipes with FSI. In Pressure Vessels and Piping Conference (Vol. 46025, p. V005T11A005). American Society of Mechanical Engineers. [Google Scholar]
  10. Wu, X. D., Liu, G. M., & Chen, H. (2012). The analysis of natural characteristics of pipeline structure systems based on frequency-domain transfer matrix method. Advanced Materials Research, 383-390, 4541-4545. [Google Scholar]
  11. Batura, A., Novikov, A., Pashchenko, A., & Dubyk, Y. (2019). An application of the transfer matrix approach for a dynamic analysis of complex spatial pipelines. Nuclear Engineering and Design, 349, 174-182. [CrossRef] [Google Scholar]
  12. Guidara, M. A., Taieb, L. H., & Taïeb, E. H. (2015). Determination of Natural Frequencies in Piping Systems Using Transfer Matrix Method. In Design and Modeling of Mechanical Systems-II (pp. 765-774). Springer, Cham. [Google Scholar]
  13. Kinsler, L. E., Frey, A. R., Coppens, A. B., & Sanders, J. V. (2000). Fundamentals of acoustics. John wiley & sons. [Google Scholar]
  14. Mohri, Y., & Hayama, S. (1987). Resonant Amplitudes of Pressure Pulsation in Pipelines: Calculations by the Equivalent Linearization Method of| q| q): Vibration, Control Engineering, Engineering for Industry. JSME International Journal, 30(262),602-607. [CrossRef] [Google Scholar]
  15. MacLaren, J. F. T., Tramschek, A. B., Sanjines, A., & Pastrana, O. F. (1975). A comparison of numerical solutions of the unsteady flow equations applied to reciprocating compressor systems. Journal of mechanical engineering science, 17(5),271-279. [CrossRef] [Google Scholar]
  16. Kriesels, P. C., Peters, M. C. A. M., Hirschberg, A., Wijnands, A. P. J., Iafrati, A., Riccardi, G., … & Bruggeman, J. C. (1995). High amplitude vortexinduced pulsations in a gas transport system. Journal of Sound and Vibration, 184(2),343-368. [CrossRef] [Google Scholar]
  17. Tonon, D., Hirschberg, A., Golliard, J., & Ziada, S. (2011). Aeroacoustics of pipe systems with closed branches. International Journal of Aeroacoustics, 10(2-3), 201-275. [CrossRef] [Google Scholar]
  18. Okuyama, K., Tamura, A., Takahashi, S., Ohtsuka, M., & Tsubaki, M. (2012). Flow-induced acoustic resonance at the mouth of one or two side branches. Nuclear engineering and design, 249, 154-158. [CrossRef] [Google Scholar]
  19. Xiao, Y., Zhao, W., Gu, H., & Gao, X. (2018). Effects of branch length and chamfer on flow-induced acoustic resonance in closed side branches. Annals of Nuclear Energy, 121, 186-193. [CrossRef] [Google Scholar]
  20. ANSYS Inc. (2013). “ANSYS® Mechanical APDL, Release 15.0, Help System, Acoustics,” ANSYS, Canonsburg, PA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.