Open Access
Issue |
E3S Web Conf.
Volume 331, 2021
International Conference on Disaster Mitigation and Management (ICDMM 2021)
|
|
---|---|---|
Article Number | 02016 | |
Number of page(s) | 5 | |
Section | Enhancing Framework for Disaster Preparedness | |
DOI | https://doi.org/10.1051/e3sconf/202133102016 | |
Published online | 13 December 2021 |
- Institute of Electrical and Electronics Engineers, “2016 2nd International Conference of Industrial, Mechanical, Electrical, and Chemical Engineering (ICIMECE): October, 6-7, 2016, Royal Ambarrukmo Hotel, Yogyakarta, Indonesia.,” 196–200 (2016) [Google Scholar]
- E. Sun and X. Zhang, “3D assisted driving system for haul trucks in surface mining,” Proc. 2011 Int. Conf. Transp. Mech. Electr. Eng. TMEE 2011, 363–366, (2011) [Google Scholar]
- Y. Nishimura, T. Osafune, S. Kato, A. Hiromori, H. Yamaguchi, and T. Higashino, “Vehicle Proximity Awareness by Inter-Vehicle Communication for Surface Mine Operation Safety,” IEEE Veh. Technol. Conf., 2017-June (2017) [Google Scholar]
- E. Sun, “The fuzzy neural network based haul truck driver fatigue detection in surface mining,” ICNC-FSKD 2017 -13th Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., no. 2016, pp. 1522–1526 (2018) [Google Scholar]
- M. B. Hemanth Kumar, S. Balasubramaniyan, S. Padmanaban, and J. B. Holm-Nielsen, “Wind energy potential assessment by Weibull parameter estimation using multiverse optimization method: A case study of Tirumala region in India,” Energies, 12, 11 (2019) [Google Scholar]
- L. G. Otaya, “Distribusi Probabilitas Weibull Dan Aplikasinya,” J. Manaj. Pendidik. Islam, 4, 2, pp. 44–66 (2016) [Google Scholar]
- E. Parameter and I. Tsani, “Estimasi Parameter … (Indria Tsani),”27–35. [Google Scholar]
- J. Waewsak, C. Chancham, M. Landry, and Y. Gagnon, “An Analysis of Wind Speed Distribution at Thasala, Nakhon Si Thammarat, Thailand,” J. Sustain. Energy Environ., 2, no. January, 51–55, (2011) [Google Scholar]
- Z. H. Hulio, W. Jiang, and S. Rehman, “Techno-Economic Assessment of the wind power potential of Hawke’s Bay using Weibull parameter: A review,” Energy Strateg. Rev., 26, no. February, 100375 (2019) [CrossRef] [Google Scholar]
- O. Douglas Queiroz de Oliveira Filho et al., “Analysis of Weibull parameters for wind power generation,” no. March 2018 (2018) [Google Scholar]
- Ilyas, Suriadi, and M. Gapy, “Analisis Potensi Tenaga Angin Menggunakan Metode Distribusi Weibull di Kawasan Banda Aceh,” Semin. Nas. dan Expo Tek. Elektro, no. February, 66–68 (2017) [Google Scholar]
- P. Bhattacharya, “Weibull Distribution for Estimating the Parameters,” Wind Energy Manag., no. 1 (2011) [CrossRef] [Google Scholar]
- S. Deep, A. Sarkar, M. Ghawat, and M. K. Rajak, “Estimation of the wind energy potential for coastal locations in India using the Weibull model,” Renew. Energy, 161, 319–339 (2020) [CrossRef] [Google Scholar]
- C. F. De Andrade, H. F. Maia Neto, P. A. Costa Rocha, and M. E. Vieira Da Silva, “An efficiency comparison of numerical methods for determining Weibull parameters for wind energy applications: A new approach applied to the northeast region of Brazil,” Energy Convers. Manag., 86, 801–808 (2014) [CrossRef] [Google Scholar]
- S. L. Walker, “Building mounted wind turbines and their suitability for the urban scale-A review of methods of estimating urban wind resource,” Energy Build., 43, 8, 1852–1862 (2011) [CrossRef] [Google Scholar]
- R. Maouedj et al., “Wind energy resource assessment at three sites in the Algerian highlands,” Proc. 2018 6th Int. Renew. Sustain. Energy Conf. IRSEC 2018, pp. 0–5 (2018) [Google Scholar]
- A. Serban, L. S. Paraschiv, and S. Paraschiv, “Assessment of wind energy potential based on Weibull and Rayleigh distribution models,” Energy Reports, 6, April, 250–267 (2020) [CrossRef] [Google Scholar]
- F. Oral, I. S. Ekmekçi, and N. Onat, “Weibull distribution for determination of wind analysis and energy production,” World J. Eng., 12, no. 3, pp. 215–220 (2015) [CrossRef] [Google Scholar]
- R. D. Prasad, R. C. Bansal, and M. Sauturaga, “Wind modeling based on wind input data conditions using Weibull distribution,” Int. J. Glob. Energy Issues, 32, 3, 227–240 (2009) [CrossRef] [Google Scholar]
- C. Paper et al., “Wind energy potential assessment to estimate the performance of selected wind turbine in the northern coastal region of Semarang-Indonesia,” no. January (2017) [Google Scholar]
- A. Fadlullah, S. Riyanto, and S. Sudirman, “Pengembangan Aplikasi Analisis Potensi Angin Sebagai Sumber Energi Terbarukan Menggunakan Estimasi Parameter Weibull Berbasis Metode Power Density (Studi Kasus: Kota Tarakan),” Inovtek Polbeng, 9, 1, 129 (2019) [CrossRef] [Google Scholar]
- B. S. Premono, D. D. D. P. Tjahjana, and S. Hadi, “Wind energy potential assessment to estimate the performance of selected wind turbine in the northern coastal region of Semarang-Indonesia,” AIP Conf. Proc., 1788, no. January (2017) [Google Scholar]
- M. A. Hyams, “Wind Energy in the built environment,” Metrop. Sustain. Underst. Improv. Urban Environ., pp. 457–499 (2012) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.