Open Access
Issue
E3S Web Conf.
Volume 331, 2021
International Conference on Disaster Mitigation and Management (ICDMM 2021)
Article Number 04011
Number of page(s) 6
Section Lesson Learnt in Disaster Management
DOI https://doi.org/10.1051/e3sconf/202133104011
Published online 13 December 2021
  1. United Nation, Sendai Framework for Disaster Risk Reduction 2015 -2030. Sendai, Japan: United Nations, (2015) [Google Scholar]
  2. United Nations, Global Sustainable Development Report. United Nations, 2015. [Google Scholar]
  3. D. Etkin, “Disaster Theory: Chapter 6 Disaster Models,” in Butterworth-Heinemann, 193–228 (2016) [Google Scholar]
  4. C. Luu, J. von Meding, M. Mojtahedi, “Analyzing Vietnam’s national disaster loss database for flood risk assessment using multiple linear regression-TOPSIS,” Int. J. Disaster Risk Reduct., 40, no. March (2019) [Google Scholar]
  5. M. Li, M. Hong, R. Zhang, “Improved Bayesian Network-Based Risk Model and Its Application in Disaster Risk Assessment,” Int. J. Disaster Risk Sci., 9, 2, 237–248 (2018) [CrossRef] [Google Scholar]
  6. L. Li, J. Wang, H. Leung, C. Jiang, “Assessment of catastrophic risk using bayesian network constructed from domain knowledge and spatial data,” Risk Anal., 30, 7, 1157–1175 (2010) [CrossRef] [Google Scholar]
  7. L. Han, J. Zhang, Y. Zhang, Q. Ma, S. Alu, Q. Lang, “Hazard assessment of earthquake disaster chains based on a Bayesian network model and ArcGIS,” ISPRS Int. J. Geo-Information, 8, 5 (2019) [Google Scholar]
  8. L. Yang, C. Cao, D. Wu, H. Qiu, M. Lu, L. Liu, “Study on Typhoon Disaster Loss and Risk Prediction and Benefit Assessment of Disaster Prevention and Mitigation,” Trop. Cyclone Res. Rev., 7, 4, 237–246 (2018) [Google Scholar]
  9. C. Huang, “Differences between disaster prediction and risk assessment in natural disasters,” Hum. Ecol. Risk Assess., 17, 3, 542–553 (2011) [CrossRef] [Google Scholar]
  10. U. Nations, Living with Risk, 2 (2004) [Google Scholar]
  11. A. W. Whelchel, F. G. Renaud, K. Sudmeier-Rieux, Z. Sebesvari, “Advancing ecosystems and disaster risk reduction in policy, planning, implementation, and management,” Int. J. Disaster Risk Reduct., 32, 1–3 (2018) [CrossRef] [Google Scholar]
  12. E. Michel-Kerjan et al., “Catastrophe risk models for evaluating disaster risk reduction investments in developing countries,” Risk Anal., 33, 6, 984–999 (2013) [CrossRef] [Google Scholar]
  13. M. Balay-As, J. Marlowe, J. C. Gaillard, “Deconstructing the binary between indigenous and scientific knowledge in disaster risk reduction: Approaches to high impact weather hazards,” Int. J. Disaster Risk Reduct., 30, 18–24 (2018) [CrossRef] [Google Scholar]
  14. D. Jurusan, T. Sipil, U. Andalas, J. Teknik, and U. Andalas, “Model ‘ Demand ‘ Pengguna ‘ Shelter ‘ Evakuasi Pada Zona Rawan Tsunami Di Kota Padang, 243–251 (2013) [Google Scholar]
  15. A. A. S. Pramitha, R. P. Utomo, N. Miladan, “Efektivitas infrastruktur perkotaan dalam penanganan risiko banjir di Kota Surakarta,” Reg. J. Pembang. Wil. dan Perenc.Partisipatif, 15, 1, 1 (2020) [CrossRef] [Google Scholar]
  16. P. Basabe, Hyogo framework for action 2005–2015, no. January 2005 (2013) [Google Scholar]
  17. J. Having, K. Bancroft, A. Rae, “Hazard reporting: How can it improve safety?,” Saf. Sci., 142 (2021) [Google Scholar]
  18. S. Huang, X. Li, Y. Wang, “A new model of geo-environmental impact assessment of mining: a multiple-criteria assessment method integrating Fuzzy-AHP with fuzzy synthetic ranking,” Environ. Earth Sci., 66, 275–284 (2012) [CrossRef] [Google Scholar]
  19. J. S. Chou, C. S. Ongkowijoyo, “Hybrid decision-making method for assessing interdependency and priority of critical infrastructure,” Int. J. Disaster Risk Reduct., 39 (2019) [Google Scholar]
  20. D. Su, X. Lei, Y. Wang, H. Wang, “Analysis of Multiobjective Scheduling Model for Emergency Management under Multi resource Combination of Disaster Chains,” Complexity, 1–12 (2021) [Google Scholar]
  21. J. Widodo Soetjipto, T. Joko Wahyu Adi, N. Anwar, “Dynamic Bayesian updating approach for predicting bridge condition based on Indonesia-bridge management system (I-BMS),” in MATEC Web of Conferences, Aug., 195 (2018) [Google Scholar]
  22. J. Widodo Soetjipto, T. J. Wahyu Adi, N. Anwar, “Bridge Deterioration Prediction Model Based On Hybrid Markov-System Dynamic,” MATEC Web Conf., The 6 th International Conference of Euro Asia Civil Engineering Forum (EACEF 2017), 138 (2017) [Google Scholar]
  23. H. Sarvari, H. Kashefi, “Identification and prioritization of seismic risks in urban worn-out textures using fuzzy Delphi method,” no. July (2021) [Google Scholar]
  24. S. J. Widodo, T. J. W. Adi, N. Anwar, “System dynamics approach for bridge deterioration monitoring system,” Int. J. Eng. Technol. Innov., 6 (4) (2016) [Google Scholar]
  25. Y. Suponco, W. Broto, T. Joko, W. Adi, E. Suryani, J. W. Soetjipto, “Project Cost Escalation Prediction Models Based on System Dynamics Approach.” [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.