Open Access
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 09001
Number of page(s) 5
Section Batteries and Electric Storages
Published online 16 February 2021
  1. Federazione ANIE Confindustria, Osservatorio sistemi di accumulo (dati al 31 Marzo 2019) sistemi di accumulo in Italia i primi dati, (2019). [Google Scholar]
  2. ARERA, Stato di utilizzo e di integrazione degli impianti di produzione alimentati dalle fonti rinnovabili anno 2017, (2018) 76 [Google Scholar]
  3. Terna S.P.A., Rapporto mensile sul sistema elettrico, Ottobre 20 (2017) 1–37. [Google Scholar]
  4. J. Spector, What We Know and Don’t Know About the Fire at an APS Battery Facility, April 23. (2019). (accessed November 4, 2019) [Google Scholar]
  5. S. Ji-hye, Panel blames electric shock, poor management system for ESS fires, not companies, 16 June. (2019). (accessed January 13, 2020) [Google Scholar]
  6. Yonhap news agency, (LEAD) ESS makers take a hit from delayed probe into fires, 2 May. (2019). [Google Scholar]
  7. J. Weaver, Regulator says lithium-ion batteries create “unacceptable risks, ” 8 August. (2019). [Google Scholar]
  8. J. Spector, The Arizona Battery Explosion Is Changing Conventional Wisdom on Safety, 10 Oct. (2019). (accessed January 13, 2020) [Google Scholar]
  9. Littleton New Hampshire Municipality, Approved Zoning Board Minutes, 10 December. (2019). [Google Scholar]
  10. S. Al Hallaj, H. Maleki, J.S. Hong, J.R. Selman, Thermal modeling and design considerations of lithium-ion batteries, J. Power Sources. 83 (1999) 1–8. [Google Scholar]
  11. G. Guo, B. Long, B. Cheng, S. Zhou, P. Xu, B. Cao, Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application, J. Power Sources. 195 (2010) 2393–2398 [Google Scholar]
  12. TOTAL BATTERY CONSULTING Inc., “The battery safety and abuse tolerance report, ” 2016 [Google Scholar]
  13. Y. Fu, S. Lu, K. Li, C. Liu, X. Cheng, H. Zhang, An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter, J. Power Sources. 273 (2015) 216–222 [Google Scholar]
  14. A.W. Golubkov, D. Fuchs, J. Wagner, H. Wiltsche, C. Stangl, G. Fauler, G. Voitic, A. Thaler, V. Hacker, Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes, RSC Adv. 4 (2014) 3633–3642 [Google Scholar]
  15. US Department of Transportation Federal Aviation Administration, Extinguishment of Lithium-Ion and Lithium-Metal Battery Fires, 2017. [Google Scholar]
  16. P. Russo, C. Di Bari, M. Mazzaro, A. De Rosa, I. Morriello, Effective fire extinguishing systems for lithium-ion battery, Chem. Eng. Trans. 67 (2018) 727–732. [Google Scholar]
  17. R. T. LongJr. and, A.F. Blum, T.J. Bress, B.R.T. Cotts, H.R.R.T. The, T. Observations, A. Fallis, Best Practices for Emergency Response to Incidents Involving Electric Vehicles Battery Hazards□: A Report on Full-Scale Testing Results, J. Chem. Inf. Model. 53 (2013) 1009–1010. [Google Scholar]
  18. DNV GL, Technical Reference for Li-ion Battery Explosion Risk and Fire Suppression, 2019 [Google Scholar]
  19. NEC Energy Solutions, Fire detection and suppression, 2019 [Google Scholar]
  20. Siemens, Fire protection for Li-ion battery energy storage systems, (2019) 1–18 [Google Scholar]
  21. DNV GL Energy, Testing of Aerosol Fire Extinguishing Agent for Li-ion Battery Fires, 2017 [Google Scholar]
  22. D. Hill, B. Gully, A. Agarwal, A. Nourai, L. Thrun, S. Swartz, M. Koslowske, S. Cummings, J. Butkowski, B. Moore, Detection of off gassing from Li-ion batteries, 2013 IEEE Energytech, Energytech 2013. (2013) 1–7. [Google Scholar]
  23. Italian Ministry of the Interior, DM 03/08/2015 Approvazione di norme tecniche di prevenzione incendi, ai sensi dell’articolo 15 del decreto legislativo 8 marzo 2006, n. 139., (n.d.) [Google Scholar]
  24. CNVVF, ENEA, Rischi connessi con lo stoccaggio sistemi di accumulo Litio-ione, 2019 [Google Scholar]
  25. M. Rebolini, S. Tosi, R. Vanadia, N. Di Pietro, E. Senatore, R. Polito, The authorization procedure for Energy Storage Systems Projects installed on the Italian Transmission Grid, in: CIGRE’, 2016 [Google Scholar]
  26. G. Jensen, J. Holmberg, A. Gussias, M. Melgard, Hypoxic Air Venting for Protection of Heritage, 2006 [Google Scholar]
  27. ISOLCELL S.p.A., (n.d.). (accessed January 16, 2020) [Google Scholar]
  28. P. Berg, A. Lindgren, Fire Prevention and Health Assessment in Hypoxic Environment, 2004 [Google Scholar]
  29. European Commitee for Standardization, Gas cylinders Gases and gas mixtures Determination of fire potential and oxidizing ability for the selection of cylinder valve outlets ISO10156, (2017) [Google Scholar]
  30. D. Sturk, L. Rosell, P. Blomqvist, A. Ahlberg Tidblad, Analysis of Li-Ion Battery Gases Vented in an Inert Atmosphere Thermal Test Chamber, Batteries. 5 (2019) 61. [Google Scholar]
  31. I.A. Zlochower, G.M. Green, The limiting oxygen concentration and flammability limits of gases and gas mixtures, J. Loss Prev. Process Ind. 22 (2009) 499–505. [Google Scholar]
  32. J. Kunkelmann, Studie zur Brandbekämpfung von Lithium-Ionen-Batterien (Akkus) und Lithium-Metall-Batterien, 2017 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.