Open Access
Issue
E3S Web Conf.
Volume 238, 2021
100RES 2020 – Applied Energy Symposium (ICAE), 100% RENEWABLE: Strategies, Technologies and Challenges for a Fossil Free Future
Article Number 10008
Number of page(s) 7
Section New Concepts
DOI https://doi.org/10.1051/e3sconf/202123810008
Published online 16 February 2021
  1. Regulation (EU) 2019/1242 of the european parliament and of the council l 198/202. European Union: https://eur-lex.europa.eu/; 2019. [Google Scholar]
  2. Iveco Stralis LNG natural power report on testing of Iveco LNG vehicles in Poland. 2016. www.cryogas.pl/pliki_do_pobrania/artykuly/Cryogas_IVECO_Report._Polish_road_tests_.pdf [Google Scholar]
  3. Bianchi M, De Pascale A. Bottoming cycles for electric energy generation: Parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl Energy 2011;88:1500–9. [Google Scholar]
  4. Schaijk J. Iveco Euro VI LNG PEMS test report. Helmond: 2018. [Google Scholar]
  5. Swedish In-Service Testing Program On Emissions from Heavy-Duty Vehicles. 2016. https://transportstyrelsen.se/globalassets/global/vag/miljo/tunga-fordon--2016.pdf. [Google Scholar]
  6. Hill N, Norris J, Kirsch F, Dun C, McGregor N, Pastori E, et al. Light weighting as a means of improving Heavy Duty Vehicles’ energy efficiency and overall CO2 emissions. 2015. [Google Scholar]
  7. Rural / Urban / Motorway. COMMISSION REGULATION (EU) No 582/2011. 2011. [Google Scholar]
  8. Zhang Q, Xu Z, Li M, Shao S. Combustion and emissions of a Euro VI heavy-duty natural gas engine using EGR and TWC. J Nat Gas Sci Eng 2016;28:660–71. [Google Scholar]
  9. Natural gas for vehicles | Liquefied natural gas http://cngeurope.com/ [Google Scholar]
  10. Exchange Rates Historical Chart n.d. https://www.macrotrends.net/charts/exchange-rates (accessed July 4, 2020). [Google Scholar]
  11. Dunteman NRA. A new look at the competitive position of the inverted-cycle gas turbine for waste-heat utilization and other applications. Massachusetts Institute of Technology, 1970. [Google Scholar]
  12. Kennedy I, Ceen B, Jones S, Chen Z, Copeland CD. Inverted Brayton Cycle With Exhaust Gas Condensation. J Eng Gas Turbines Power 2018. [Google Scholar]
  13. Di Battista D, Carapellucci R, Cipollone R. Integrated evaluation of Inverted Brayton cycle recovery unit bottomed to a turbocharged diesel engine. Appl Therm Eng 2020;175:115353. [Google Scholar]
  14. Di Battista D, Fatigati F, Carapellucci R, Cipollone R. Inverted Brayton Cycle for waste heat recovery in reciprocating internal combustion engines. Appl Energy 2019;253:113565. [Google Scholar]
  15. Ferrari G. Motori a Combustione Interna. Bologna: Società Editrice Esculapio; 2019. [Google Scholar]
  16. Abrosimov KA, Baccioli A, Bischi A. Technoeconomic analysis of combined inverted Brayton – Organic Rankine cycle for hightemperature waste heat recovery. Energy Convers Manag 2020;207:15. [Google Scholar]
  17. Amazon.com: Turbo charger fit Volvo D12 2020. https://www.amazon.com/dp/B083QTTT4P/ref=cm_sw_em_r_mt_dp_U_rMXbFbRJ6MV84 [Google Scholar]
  18. Turton R, Bailie RC, Whiting WB, Shaeiwitz JA. Analysis, Synthesis and Design of Chemical Processes. 3rd ed. Pearson Education; 2008. [Google Scholar]
  19. Humphreys KK, editor. Project and Cost Engineers’ Handbook. New York: CRC Press; 2004. [Google Scholar]
  20. Hewitt GF, Pugh SJ. Approximate design and costing methods for heat exchangers. Heat Transf Eng 2007;28:76–86. [Google Scholar]
  21. Kananeh AB, Peschel J. Fouling in Plate Heat Exchangers: Some Practical Experience. In: Dr.Jovan Mitrovic, editor., InTech; 2012, p. 533–50. [Google Scholar]
  22. Sinnott RK, Coulson JM, Richardson JF. Coulson and Richardson’s chemical engineering. Vol. 6, Chemical engineering design. 4th ed. Elsevier Butterworth Heinemann; 2005. [Google Scholar]
  23. ESDU, Selection and Costing of Heat Exchangers, Plate-Fin Type, item No. 97006. ESDUdata 1997. [Google Scholar]
  24. Chemical Engineering Chemical Engineering essentials for the global chemical processing industries (CPI) 2019. https://www.chemengonline.com/ [Google Scholar]
  25. Xie GN, Sunden B, Wang QW. Optimization of compact heat exchangers by a genetic algorithm. Appl Therm Eng 2008;28:895–906. [Google Scholar]
  26. Alibaba.com n.d. https://www.alibaba.com/ [Google Scholar]
  27. Dorosz P, Wojcieszak P, Malecha Z. Exergetic Analysis, Optimization and Comparison of LNG Cold Exergy Recovery Systems for Transportation. Entropy 2018;20:59. [Google Scholar]
  28. Pettersson N, Johansson KH. Modelling and control of auxiliary loads in heavy vehicles. Int J Control 2006;79:479–95. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.