Open Access
E3S Web Conf.
Volume 239, 2021
International Conference on Renewable Energy (ICREN 2020)
Article Number 00022
Number of page(s) 9
Published online 10 February 2021
  1. R. Mohebbi, M.M. Rashidi, M. Izadi, N.A.C. Sidik, H.W. Xian, Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method, Int. J. Heat Mass Transf. 117 (2018) 1291–1303. [Google Scholar]
  2. Y. Ma, R. Mohebbi, M.M. Rashidi, Z. Yang, Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method, Phys. Fluids. 30 (2018) 32001. [Google Scholar]
  3. Y. Vermahmoudi, S.M. Peyghambarzadeh, S.H. Hashemabadi, M. Naraki, Experimental inv[estigation on heat transfer performance of Fe2O3/water nanofluid in an air-finned heat exchanger, Eur. J. Mech. B/Fluids. 44 (2014) 32–41. doi:10.1016/j.euromechflu.2013.10.002. [Google Scholar]
  4. M. Jafari, M. Farhadi, K. Sedighi, Convection heat transfer of SWCNT-nanofluid in a corrugated channel under pulsating velocity profile, Int. Commun. Heat Mass Transf. 67 (2015) 137–146. [Google Scholar]
  5. C.G. Granqvist, R.A. Buhrman, J. Wyns, A.J. Sievers, Far-infrared absorption in ultrafine Al particles, Phys. Rev. Lett. 37 (1976) 625. [Google Scholar]
  6. S.U.S. Choi, D.A. Singer, H.P. Wang, Developments and applications of non-Newtonian flows, Asme Fed. 66 (1995) 99–105. [Google Scholar]
  7. J.C. Maxwell, A treatise on electricity and magnetism, Oxford: Clarendon Press, 1873. [Google Scholar]
  8. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett. 79 (2001) 2252–2254. doi:10.1063/1.1408272. [Google Scholar]
  9. M.M. Ali, M.A. Alim, S.S. Ahmed, Numerical Simulation of Hydromagnetic Natural Convection Flow in a Grooved Enclosure Filled with CuO–Water Nanofluid Considering Brownian Motion, Int. J. Appl. Comput. Math. 4 (2018) 1–24. doi:10.1007/s40819-018-0563-1. [Google Scholar]
  10. N.T. Ravi Kumar, P. Bhramara, B.M. Addis, L.S. Sundar, M.K. Singh, A.C.M. Sousa, Heat transfer, friction factor and effectiveness analysis of Fe3O4/water nanofluid flow in a double pipe heat exchanger with return bend, Int. Commun. Heat Mass Transf. 81 (2017) 155–163. doi:10.1016/j.icheatmasstransfer.2016.12.019. [Google Scholar]
  11. U. Khan, N. Ahmed, S.T. Mohyud-Din, Analysis of magnetohydrodynamic flow and heat transfer of Cu–water nanofluid between parallel plates for different shapes of nanoparticles, Neural Comput. Appl. 29 (2018) 695–703. doi:10.1007/s00521-016-2596-x. [Google Scholar]
  12. J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, C.J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transf. 51 (2008) 2651–2656. doi:10.1016/j.ijheatmasstransfer.2007.10.026. [Google Scholar]
  13. Y. Hwang, J.K. Lee, C.H. Lee, Y.M. Jung, S.I. Cheong, C.G. Lee, B.C. Ku, S.P. Jang, Stability and thermal conductivity characteristics of nanofluids, Thermochim. Acta. 455 (2007) 70–74. doi:10.1016/j.tca.2006.11.036. [Google Scholar]
  14. J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718–720. doi:10.1063/1.1341218. [Google Scholar]
  15. H.M. Ali, M.U. Sajid, A. Arshad, Heat transfer applications of TiO2 nanofluids, Appl. Titan. Dioxide. (2017). [Google Scholar]
  16. S.M. Peyghambarzadeh, S.H. Hashemabadi, S.M. Hoseini, M. Seifi Jamnani, Experimental study of heat transfer enhancement using water/ethylene glycol based nanofluids as a new coolant for car radiators, Int. Commun. Heat Mass Transf. 38 (2011) 1283–1290. doi:10.1016/j.icheatmasstransfer.2011.07.001. [Google Scholar]
  17. H.M. Ali, H. Ali, H. Liaquat, H.T. Bin Maqsood, M.A. Nadir, Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids, Energy. 84 (2015) 317–324. doi:10.1016/ [Google Scholar]
  18. K.Y. Leong, R. Saidur, S.N. Kazi, A.H. Mamun, Performance investigation of an automotive car radiator operated with nanofluid-based coolants (nanofluid as a coolant in a radiator), Appl. Therm. Eng. 30 (2010) 2685–2692. doi:10.1016/j.applthermaleng.2010.07.019. [Google Scholar]
  19. M.S. Wadd, D.R.M. Warkhedkar, V.G. Choudhari, Comparing performance of nanofluids of metal and nonmetal as coolant in automobile radiator, Int. J. Adv. Res. Sci. Eng. IJARSE. 4 (2015) 182–190. [Google Scholar]
  20. M. Kole, T.K. Dey, Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids, J. Appl. Phys. 113 (2013). doi:10.1063/1.4793581. [Google Scholar]
  21. I. Zakaria, W.H. Azmi, W.A.N.W. Mohamed, R. Mamat, G. Najafi, Experimental Investigation of Thermal Conductivity and Electrical Conductivity of Al2O3 Nanofluid in Water Ethylene Glycol Mixture for Proton Exchange Membrane Fuel Cell Application, Int. Commun. Heat Mass Transf. 61 (2015) 61–68. doi:10.1016/j.icheatmasstransfer.2014.12.015. [Google Scholar]
  22. L.S. Sundar, M.H. Farooky, S.N. Sarada, M.K. Singh, Experimental thermal conductivity of ethylene glycol and water mixture based low volume concentration of Al2O3 and CuO nanofluids, Int. Commun. Heat Mass Transf. 41 (2013) 41–46. doi:10.1016/j.icheatmasstransfer.2012.11.004. [Google Scholar]
  23. M.C.S. Reddy, V.V. Rao, Experimental studies on thermal conductivity of blends of ethylene glycol-waterbased TiO2 nanofluids, Int. Commun. Heat Mass Transf. 46 (2013) 31–36. doi:10.1016/j.icheatmasstransfer.2013.05.009. [Google Scholar]
  24. S. Osman, M. Sharifpur, J.P. Meyer, Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide-water nanofluids in a rectangular channel, Int. J. Heat Mass Transf. 133 (2019) 895–902. doi:10.1016/j.ijheatmasstransfer.2018.12.169. [Google Scholar]
  25. P. Taylor, C.C. Wang, P.Y. Chen, J.Y. Jang, Experimental Heat Transfer: A Journal of Thermal Energy Generation, Transport, Storage, and Conversion CONVEX-LOUVER FIN-AND-TUBE HEAT EXCHANGERS, (2007) 37–41. doi:10.1080/08916159208946431. [Google Scholar]
  26. D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transf. 47 (2004) 5181–5188. doi:10.1016/j.ijheatmasstransfer.2004.07.012. [Google Scholar]
  27. T.H. Nassan, S.Z. Heris, S.H. Noie, A comparison of experimental heat transfer characteristics for Al 2 O 3/water and CuO/water nanofluids in square cross-section duct, Int. Commun. Heat Mass Transf. 37 (2010) 924–928. doi:10.1016/j.icheatmasstransfer.2010.04.009. [Google Scholar]
  28. C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng. 27 (2007) 1501–1506. doi:10.1016/j.applthermaleng.2006.09.028. [Google Scholar]
  29. A.İ. Özdemir, R. Düzgün, Türkiye’deki Otomotiv Firmalarinin Sermaye Yapisina Göre Etkinlik Analizi, Atatürk Üniversitesi İktisadi ve İdari Bilim. Derg. 23 (2009) 147–164. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.