Open Access
Issue
E3S Web Conf.
Volume 239, 2021
International Conference on Renewable Energy (ICREN 2020)
Article Number 00024
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202123900024
Published online 10 February 2021
  1. I. Worighi, A. Maach, A. Hafid, O. Hegazy, J. Van Mierlo, Integrating renewable energy in smart grid system: Architecture, virtualization and analysis, Sustain. Energy, Grids Networks. 18 (2019) 100226. https://doi.org/10.1016/j.segan.2019.100226. [Google Scholar]
  2. F. Salah, R. Henriquez, G. Wenzel, D.E. Olivares, M. Negrete-Pincetic, C. Weinhardt, Portfolio Design of a Demand Response Aggregator With Satisficing Consumers, IEEE Trans. Smart Grid. 10 (2019) 2475–2484. https://doi.org/10.1109/TSG.2018.2799822. [Google Scholar]
  3. C. Silva, P. Faria, Z. Vale, Demand Response and Distributed Generation Remuneration Approach Considering Planning and Operation Stages, Energies. 12 (2019) 2721. https://doi.org/10.3390/en12142721. [Google Scholar]
  4. N. Good, K.A. Ellis, P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid, Renew. Sustain. Energy Rev. 72 (2017) 57–72. https://doi.org/10.1016/j.rser.2017.01.043. [Google Scholar]
  5. L. Gkatzikis, I. Koutsopoulos, T. Salonidis, The Role of Aggregators in Smart Grid Demand Response Markets, IEEE J. Sel. Areas Commun. 31 (2013) 1247–1257. https://doi.org/10.1109/JSAC.2013.130708. [Google Scholar]
  6. O. Abrishambaf, P. Faria, Z. Vale, J.M. Corchado, Real-Time Simulation of a Curtailment Service Provider for Demand Response Participation, in 2018 IEEE/PES Transm. Distrib. Conf. Expo., IEEE, (2018): pp. 1–9. https://doi.org/10.1109/TDC.2018.8440492. [Google Scholar]
  7. N.G. Paterakis, O. Erdinç, J.P.S. Catalão, An overview of Demand Response: Keyelements and international experience, Renew. Sustain. Energy Rev. 69 (2017) 871–891. https://doi.org/10.1016/j.rser.2016.11.167. [Google Scholar]
  8. E.A. Martínez Ceseña, N. Good, P. Mancarella, Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users, Energy Policy. 82 (2015) 222–232. https://doi.org/10.1016/j.enpol.2015.03.012. [Google Scholar]
  9. R. Alasseri, T.J. Rao, K.J. Sreekanth, Conceptual framework for introducing incentivebased demand response programs for retail electricity markets, Energy Strateg. Rev. 19 (2018) 44–62. https://doi.org/10.1016/j.esr.2017.12.001. [Google Scholar]
  10. C. Silva, P. Faria, Z. Vale, Multi-Period Observation Clustering for Tariff Definition in a Weekly Basis Remuneration of Demand Response, Energies. 12 (2019) 1248. https://doi.org/10.3390/en12071248. [Google Scholar]
  11. O. Abrishambaf, P. Faria, Z. Vale, Participation of a Smart Community of Consumers in Demand Response Programs, in: 2018 Clemson Univ. Power Syst. Conf., IEEE, 2018: pp. 1–5. https://doi.org/10.1109/PSC.2018.8664007. [Google Scholar]
  12. O. Abrishambaf, P. Faria, Z. Vale, Application of an optimization-based curtailment service provider in real-time simulation, Energy Informatics. 1 (2018) 3. https://doi.org/10.1186/s42162-018-0006-6. [Google Scholar]
  13. G. Lipari, G. Del Rosario, C. Corchero, F. Ponci, A. Monti, A real-time commercial aggregator for distributed energy resources flexibility management, Sustain. Energy, Grids Networks. 15 (2018) 63–75. https://doi.org/10.1016/j.segan.2017.07.002. [Google Scholar]
  14. O. Abrishambaf, P. Faria, Z. Vale, SCADA Office Building Implementation in the Context of an Aggregator, in 2018 IEEE Inter. Conf. on Indus. Inform., IEEE, (2018): pp. 984–989. https://doi.org/10.1109/INDIN.2018.8471957. [Google Scholar]
  15. S. Williams, M. Short, T. Crosbie, M. Shadman-Pajouh, A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services, Energies. 13 (2020) 16. https://doi.org/10.3390/en13164191. [Google Scholar]
  16. O. Abrishambaf, L. Gomes, P. Faria, J.L. Afonso, Z. Vale, Real-time simulation of renewable energy transactions in microgrid context using real hardware resources, in 2016 IEEE/PES Transm. Distrib. Conf. Expo., IEEE, (2016): pp. 1–5. https://doi.org/10.1109/TDC.2016.7520009. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.