Open Access
E3S Web Conf.
Volume 244, 2021
XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020)
Article Number 01012
Number of page(s) 7
Section Protection of Habitats and the Control of Hazards
Published online 19 March 2021
  1. V. Goswami, D. Vasudev, B. Joshi, P. Hait, P Sharma, Coupled effects of climatic forcing and the human footprint on wildlife movement and space use in a dynamic floodplain landscape Science of The Total Environment (2021) DOI: 10.1016/j.scitotenv.2020.144000 [Google Scholar]
  2. V. M. Gaponov, A. N. Elizaryev, S. G. Aksenov, A. Longobardi, Analysis of trends in annual time series of precipitation in the Republic of Bashkortostan, Conference Series: Earth and Environmental Science 350, 012003 (2019) DOI: 10.1088/1755-1315/350/1/012003 [Google Scholar]
  3. N. V. Trung, J. H. Choi, S. J. Won, Monitoring floodplain area of Tonle Sap Lake, Cambodia using multi-temporal ALOS PALSAR data, 3rd International Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), p 524–530 (2011) [Google Scholar]
  4. I. Nichersu, E. Marin, C. Trifanov, Environment Management Risk Programs in Northern Coastal Zone of Black Sea - the Romanian Sector, Proceedings of the Ninth International Conference on the Mediterranean Coastal Environment MEDCOAST 09 - 10-14, p 579–590 (2009) [Google Scholar]
  5. K. Youjung, N. Galen, Advancing scenario planning through integrating urban growth prediction with future flood risk models, Ecological Engineering 158 (2020) [Google Scholar]
  6. Y. J. Kwak, R. Pelich, Fractional Floodwater-Pixel Fusion for Emergency Response Using ALOS-2 and Sentinel-1 IEEE Aerospace Conference (2019) [Google Scholar]
  7. S. Schindler, F. O’Neill, M. Biro, C. Damm, V. Gasso, et al. Multifunctional floodplain management and biodiversity effects: a knowledge synthesis for six European countries, Biodiversity and Conservation 25, 1349–1382 (2016) [Google Scholar]
  8. T. Silva, M. Costa, E. Novo, J. Melack, A multisensor, multitemporal approach for monitoring herbaceous vegetation growth in the Amazon floodplain, 7th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (2013) [Google Scholar]
  9. C. Huang, Y. Chen, J. Yu, J. Wu, Detecting floodplain inundation frequency using MODIS time-series imagery, 2012 First International Conference on Agro- Geoinformatics (Agro-Geoinformatics) (2013) [Google Scholar]
  10. S. Benger, Remote sensing of ecological responses to changes in the hydrological cycles of the tonle sap, Cambodia IEEE International Geoscience and Remote Sensing Symposium (2008) [Google Scholar]
  11. J. Lacassie, J. Ruiz-Del-Solar, Application of artificial neural networks to the geochemical study of an impacted fluvial system, The 2010 International Joint Conference on Neural Networks (IJCNN) (2010) [Google Scholar]
  12. O. Ozcan, S. Akay, Modeling Morphodynamic Processes in Meandering Rivers with UAV-Based Measurements, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium (2018) [Google Scholar]
  13. L. Kooistra, E. Kuilder, C. Mücher, Object-based random forest classification for mapping floodplain vegetation structure from nation-wide CIR AND LiDAR datasets, 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (2014) [Google Scholar]
  14. J. Brus, V. Pechanec, H. Kilianova, I. Machar, The evolution of the floodplain forests as indicators of landscape changes in the alluvium of the Morava River, 21st International Conference on Geoinformatics (2013) [Google Scholar]
  15. J. Betbeder, V. Gond, F. Frappart, N. Baghdadi, G. Briant, E. Bartholome, Mapping of Central Africa Forested Wetlands Using Remote Sensing, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7 (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.