Issue |
E3S Web Conf.
Volume 7, 2016
3rd European Conference on Flood Risk Management (FLOODrisk 2016)
|
|
---|---|---|
Article Number | 18021 | |
Number of page(s) | 5 | |
Section | Forecasting and warning | |
DOI | https://doi.org/10.1051/e3sconf/20160718021 | |
Published online | 20 October 2016 |
Development of a Flood Warning Simulation System: A Case Study of 2007 Tewkesbury Flood
1 ICS, The James Hutton Institute, Aberdeen, UK, AB15 8QH
2 School of Computing Science and Digital Media, Robert Gordon University, UK, AB10 7QB
3 College of Surveying and Geo-Informatics,Tongji University, China, 200092
4 Stockholm Environment Institute, University of York, UK, YO10 5DD
a Corresponding author: chen.wang@hutton.ac.uk
Many flood warning systems were developed for 2D environments and limited on specific flood hazard. With the purpose of overcoming these disadvantages, it is necessary to propose new methodologies and techniques for 3D real time flood simulation. In this paper, a novel flood hazard warning system has been proposed. It describes and defines the relationship between the different parts of the simulation system in order to offer not only numeric data or figures, but also more meaningful and appealing 3D visual information. Consequently, the performance of this simulation system depends on the quality of the three sub systems: 3D real world modelling system with GIS data, 3D environment reconstruction system and 3D flood simulation system. A new flooding model has been developed which can handle dynamic flood behaviour and predict inundation areas in real time. In order to validate our flood warning system, the region of Tewkesbury in England has been simulated with a potential flood. The flood spreading process is shown during different time and the detailed inundation area is presented for further disaster evaluation. The study achieved two main objectives: implementing a useful flood simulation with real world model and reconstructed environment for flood hazard warning; producing a friendly simulation system interface for either a decision maker or experienced user.
© The Authors, published by EDP Sciences, 2016
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.