Open Access
Issue
E3S Web Conf.
Volume 244, 2021
XXII International Scientific Conference Energy Management of Municipal Facilities and Sustainable Energy Technologies (EMMFT-2020)
Article Number 11005
Number of page(s) 8
Section Energy Management and Policy
DOI https://doi.org/10.1051/e3sconf/202124411005
Published online 19 March 2021
  1. R. S. Golov, A. V. Myl’nik, D.A. Prokofev, Teoreticheskie osnovy reindustrializacii ekonomiki v kontekste sistemnoj innovacionnoj modernizacii promyshlennosti. Ekonomika i upravlenie v mashinostroenii. 3, 15–20 (2016) [Google Scholar]
  2. R. S. Golov, A. V. Myl’nik, Transformaciya professionaTnyh funkcij cheloveka v usloviyah formirovaniya integrirovannyh avtomatizirovannyh informacionnyh sistem v promyshlennosti. Ekonomika i upravlenie v mashinostroenii, 1, 5–11 (2017) [Google Scholar]
  3. L. He Zh Rayman-Bacchus, Y. Wu, Self-organization of industrial clustering in a transition economy: A proposed framework and case study evidence from China, Research Policy, 40(9), 1280–1294 (2011) [Google Scholar]
  4. R. S. Golov, A. V. Myl’nik, Konceptual’nye osnovy formirovaniya innovacionno-investicionnyh klasternyh sred v usloviyah modernizacii ekonomiki. Ekonomika i upravlenie v mashinostroenii, 1, 32–38 (2014) [Google Scholar]
  5. R. S. Golov, A. V. Myl’nik, Teoreticheskie osnovy formirovaniya innovacionno-sinergeticheskih romyshlennyh klasterov. Ekonomika i upravlenie v mashinostroenii, 3, 26–29 (2012) [Google Scholar]
  6. B. Guo, J.-J. Guo, Patterns of technological learning within the knowledge systems of industrial clusters in emerging economies: Evidence from China. Technovation, 31(2-3), 87–104 (2011) [Google Scholar]
  7. Y. Lu, C. Liu, K.I.-K. Wang, H. Huang, X. Xu, Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61 (2020) [Google Scholar]
  8. E. Negri, S. Berardi, L. Fumagalli, M. Macchi, MES-integrated digital twin frameworks. Journal of Manufacturing Systems, 56, 58–71 (2020) [Google Scholar]
  9. A. Raj, G. Dwivedi, A. Sharma, A. B. Jabbour, S. Rajak, Barriers to the adoption of industry 4.0 technologies in the manufacturing sector: An inter-country comparative perspective. International Journal of Production Economics, 224 (2020) [Google Scholar]
  10. G. Dalmarco, F. R. Ramalho, A. C. Barrosa, A. L. Soaresac, Providing industry 4.0 technologies: The case of a production technology cluster The Journal of High Technology Management Research, 30, I. 2 (2019) [Google Scholar]
  11. M. Götz The Industry 4.0 Induced Agility and New Skills in Clusters. Foresight and STI Governance, 13(2), 72–83 (2019) [Google Scholar]
  12. A. K. Shukla, R. Nath, P. K. Muhuri, Q. M. Lohani, Energy efficient multi-objective scheduling of tasks with interval type-2 fuzzy timing constraints in an Industry 4.0 ecosystem. Engineering Applications of Artificial Intelligence, 87 (2020) [Google Scholar]
  13. M. Götz, Unpacking the provision of the industrial commons in Industry 4.0 cluster. Economics and Business Review, 5(4), 23–48 (2019) [Google Scholar]
  14. M. Gancarczyk, J. Gancarczyk Proactive International strategies of cluster SMEs. European Management Journal, 36(1), 59–70 (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.