Open Access
Issue
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03001
Number of page(s) 5
Section Chemical Performance Research and Chemical Industry Technology Research and Development
DOI https://doi.org/10.1051/e3sconf/202124503001
Published online 24 March 2021
  1. Kang, Y. et al. Na+ and K+ ion selectivity by size-controlled biomimetic graphene nanopores. Nanoscale 6, 10666-10672, doi:10.1039/c4nr01383b (2014). [PubMed] [Google Scholar]
  2. Yang, T. et al. Structure and selectivity in bestrophin ion channels. Science 346, 355-359, doi:10.1126/science.1259723 (2014). [Google Scholar]
  3. Chen, Y. F., Ni, Z. H., Wang, G. M., Xu, D. Y. & Li, D. Y. Electroosmotic flow in nanotubes with high surface charge densities. Nano Letters 8, 42-48, doi:10.1021/nl0718566 (2008). [PubMed] [Google Scholar]
  4. Cao, L. et al. On the Origin of Ion Selectivity in Ultrathin Nanopores: Insights for Membrane log cale Osmotic Energy Conversion. Advanced Functional Materials 28, 1804189.1804181-1804189.1804188 (2018). [Google Scholar]
  5. Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363. [Google Scholar]
  6. Sahu, S. & Zwolak, M. Maxwell-Hall access resistance in graphene nanopores. Physical Chemistry Chemical Physics, 10.1039.C1037CP07924A (2018). [Google Scholar]
  7. Mouterde et al. Molecular streaming and its voltage control in ångström-scale channels. Nature (2019). [Google Scholar]
  8. Zhang, Z., Wen, L. & Jiang, L. Bioinspired smart asymmetric nanochannel membranes. Chemical Society Reviews 47 (2018). [Google Scholar]
  9. Amy, G. et al. Membrane-based seawater desalination: Present and future prospects. Desalination (2017). [Google Scholar]
  10. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Materials 7, 845-854 (2008). [CrossRef] [PubMed] [Google Scholar]
  11. Guo, W., Tian, Y. & Jiang, L. Asymmetric Ion Transport through Ion-Channel-Mimetic Solid-State Nanopores. Acc Chem Res 46, 2834-2846 (2013). [PubMed] [Google Scholar]
  12. Garaj, S. et al. Graphene as a subnanometre trans-electrode membrane. Nature 467, 190-U173, doi:10.1038/nature09379 (2010). [CrossRef] [PubMed] [Google Scholar]
  13. Bordin, J. R., Diehl, A., Barbosa, M. C. & Levin, Y. Ion fluxes through nanopores and transmembrane channels. Physical Review E 85, doi:ARTN 03191410.1103/PhysRevE.85.031914 (2012). [Google Scholar]
  14. Yeh, L. H., Zhang, M. K. & Qian, S. Z. Ion Transport in a pH-Regulated Nanopore. Analytical Chemistry 85, 7527-7534, doi:10.1021/ac401536g (2013). [PubMed] [Google Scholar]
  15. Joseph, S., Mashl, R. J., Jakobsson, E. & Aluru, N. R. Electrolytic transport in modified carbon nanotubes. Nano Letters 3, 1399-1403, doi:10.1021/nl0346326 (2003). [Google Scholar]
  16. Suk, M. E. & Aluru, N. R. Ion transport in sub-5-nm graphene nanopores. Journal of Chemical Physics 140, doi:10.1063/1.4866643 (2014). [Google Scholar]
  17. Hu, G., Mao, M. & Ghosal, S. Ion transport through a graphene nanopore. Nanotechnology 23, doi:10.1088/0957-4484/23/39/395501 (2012). [Google Scholar]
  18. Wanunu, M. et al. Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. Nat. Nanotechnol. 5, 807-814, doi:10.1038/Nnano.2010.202 (2010). [PubMed] [Google Scholar]
  19. Suk et al. Ion transport in sub-5-nm graphene nanopores. Journal of Chemical Physics 140, 084707-084701-084707-084707 (2014). [Google Scholar]
  20. Duan, C. & Majumdar, A. Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat. Nanotechnol. 5, 848 (2010). [PubMed] [Google Scholar]
  21. Gupta, A., Zuk, P. J. & Stone, H. A. Charging Dynamics of Overlapping Double Layers in a Cylindrical Nanopore. Physical Review Letters 125, 076001 (2020). [PubMed] [Google Scholar]
  22. Davoodabadi, A., Nazari, M., Huang, D., Luo, T. & Ghasemi, H. Transport Phenomena in Nano/Molecular Confinements. ACS Nano (2020). [Google Scholar]
  23. Sherwood, J. D., Mao, M. & Ghosal, S. Electroosmosis in a finite cylindrical pore: simple models of end effects. Langmuir 30, 9261-9272 (2014). [PubMed] [Google Scholar]
  24. Luo, Z. X., Xing, Y. Z., Ling, Y. C., Kleinhammes, A. & Wu, Y. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nature Communications 6, 6358 (2015). [PubMed] [Google Scholar]
  25. Noh, Y. & Aluru, N. R. R. Ion Transport in Electrically Imperfect Nanopores. ACS Nano XXXX (2020). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.