Open Access
Issue
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03026
Number of page(s) 7
Section Chemical Performance Research and Chemical Industry Technology Research and Development
DOI https://doi.org/10.1051/e3sconf/202124503026
Published online 24 March 2021
  1. H.S. Dong, F.F. Zhou. High-energy explosives and related properties. Science, Beijing, 1989, pp.62-69. [Google Scholar]
  2. J Neutz, O. Grosshardt, S. Schäufele, et al. Synthesis, Characterization and Thermal Behaviour of Guanidinium-5-aminotetrazolate (GA)-A New Nitrogen-Rich Compound, Propell. Explos. Pyrot, 28 (2010) [Google Scholar]
  3. M. Hiskey, D. Chavez. Insensitive high-nitrogen compounds. NTIS No: DE220012776133,2001. [Google Scholar]
  4. J. Zhou, L. Ding, X. Wang, et al. Transformation and Stability of N -Nitrodiethanolamine Dinitrate Nitration Liquid System under Thermal and Mechanical Stimulation, Chemistry Open, 7 (2018) [Google Scholar]
  5. W.F. Pi, X.D. Song, C. Zhang. Combustion performance of double-based propellant with a lead-free catalyst Gal-BiCu, J. Energ. Mater. 19 (2011). [Google Scholar]
  6. Y.Y. Ma. Effect of DINA on the performance of double base propellant, J. Energ. Mater. 2 (1995). [Google Scholar]
  7. A. Ksiczak, M. Ostrowski, W. Tomaszewski. Thermochemistry of the binary system nitrocellulose + N-nitrodiethanolamine dinitrate, J. Therm. Anal. Calorim, 94 (2008) 275-279. [Google Scholar]
  8. M.A. Zayed, A.A. Soliman, M.A. Hassan. Evaluation of malonanilides as new stabilizers for double-base propellants, J. Hazard Mater. 73 (2000) 237-244. [Google Scholar]
  9. J. Zhang. Thermal decomposition characteristic and kinetics of DINA, J. Therm. Anal. Calorim, 133 (2017) 1-9. [Google Scholar]
  10. T.S. Ren. Chemistry and technology of nitramine and nitrate ester explosive, Weapon Industry, Beijing, 1994, pp.325-340. [Google Scholar]
  11. Z.C. Chen, J.K. Chen, X.X. Zhang. Technological Design of Contimaous Manufacture of DINA, J. Nanjing U SCI TECHNO: NAT SCI ED, 2 (1982). [Google Scholar]
  12. J. Zhang, B.B. Xue, G.N. Rao, et al., Thermal decomposition characteristic and kinetics of DINA, J. Therm. Anal. Calorim. (2017). [Google Scholar]
  13. J.M. Tseng, T.F. Hsieh, Y.M. Chang, Prediction of thermal hazard of liquid organic peroxides by non-isothermal and isothermal kinetic model of DSC tests, J. Therm. Anal. Calorim. 109 (2012). [Google Scholar]
  14. J.R. Chen, S.Y. Cheng, M.H. Yuan, Hierarchical kinetic simulation for autocatalytic decomposition of cumene hydroperoxide at low temperatures, J. Therm. Anal. Calorim. 96 (2009). [Google Scholar]
  15. X.R. Li, H. Koseki, SADT prediction of autocatalytic material using isothermal calorimetry analysis, Thermochim. Acta 431 (2005). [Google Scholar]
  16. F. Stoessel, Thermal Safety of Chemical Processes, Wiley-VCH, Weinheim, 2008, pp.279–282. [CrossRef] [Google Scholar]
  17. O.J.R. Valdes, V.C. Moreno, S.P. Waldram, et al., Experimental sensitivity analysis of the runaway severity of dicumyl peroxide decomposition USING adiabatic calorimetry, Thermochim. Acta 617 (2005). [Google Scholar]
  18. B. Roduit, M. Hartmanna, P. Follyb, et al., Parameters influencing the correct thermal safety evaluation of autocatalytic reaction, Chem. Eng. Trans. 31 (2013). [Google Scholar]
  19. T. Yang, T, L.P. Chen, W.H. Chen. Experimental Method on Rapid Identification of Autocatalysis in Decomposition Reactions, Phys. Chem. Acta 30 (2014). [Google Scholar]
  20. G.B. Lu, T. Yang, L.P. Chen. Thermal decomposition kinetics of 2-ethylhexyl nitrate under non-isothermal and isothermal conditions, J. Therm. Anal. Calorim, 124 (2016). [Google Scholar]
  21. S. V yazovkin, A. K. Burnham, M. José, Criado, et al. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta 520 (2011). [Google Scholar]
  22. A. Kossoy, T. Hofelich, Methodology and software for assessing reactivity ratings of chemical systems, Process. Saf. Prog. 22 (2003). [Google Scholar]
  23. Thermal Safety Software(TSS), ChemInform Saint Petersburg(CISP) Co., Ltd. St. Petersburg, Russia, 2017. [Google Scholar]
  24. J.H. Sun, H. Ding. Thermal hazard evaluation of chemicals. Science, Beijing, 2007. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.