Open Access
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03027
Number of page(s) 10
Section Chemical Performance Research and Chemical Industry Technology Research and Development
Published online 24 March 2021
  1. Pietanza, M. C., Byers, L. A., Minna, J. D., & Rudin, C. M. (2015). Small cell lung cancer: will recent progress lead to improved outcomes?. Clinical cancer research : an official journal of the American Association for Cancer Research, 21(10), 2244–2255. [PubMed] [Google Scholar]
  2. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. cell, 100(1), 57–70. [CrossRef] [PubMed] [Google Scholar]
  3. Lrochelle, S., Chen, J., Knights, R., Pandur, J., Morcillo, P., Erdjument-Bromage, H., ... & Fisher, R. P. (2001). T-loop phosphorylation stabilizes the CDK7–cyclin H–MAT1 complex in vivo and regulates its CTD kinase activity. The EMBO journal, 20(14), 3749–3759. [PubMed] [Google Scholar]
  4. Lolli, G., & Johnson, L. N. (2005). CAK—cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs?. Cell cycle, 4(4), 565–570. [Google Scholar]
  5. Ebmeier, C., Erickson, B., Allen, B., Allen, M., Kim, H., Fong, N., ... & Old, W. (2018). Human TFIIH Kinase CDK7 Regulates Transcription-Associated Epigenetic Modifications. Available at SSRN 3155590. [Google Scholar]
  6. Parua, P. K., & Fisher, R. P. (2020). Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nature chemical biology, 16(7), 716–724. [PubMed] [Google Scholar]
  7. Yankulov, K. Y., & Bentley, D. L. (1997). Regulation of CDK7 substrate specificity by MAT1 and TFIIH. The EMBO journal, 16(7), 1638–1646. [PubMed] [Google Scholar]
  8. Ganuza, M., Sáiz-Ladera, C., Cañamero, M., Gómez, G., Schneider, R., Blasco, M. A., . . . Barbacid, M. (2012). Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. The EMBO Journal, 31(11), 2498–2510. [PubMed] [Google Scholar]
  9. Kanin, E. I., Kipp, R. T., Kung, C., Slattery, M., Viale, A., Hahn, S., ... & Ansari, A. Z. (2007). Chemical inhibition of the TFIIH-associated kinase Cdk7/Kin28 does not impair global mRNA synthesis. Proceedings of the National Academy of Sciences, 104(14), 5812–5817. [Google Scholar]
  10. Zhang, H., Christensen, C. L., Dries, R., Oser, M. G., Deng, J., Diskin, B., ... & Papadopoulos, E. (2020). CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell, 37(1), 37–54. [PubMed] [Google Scholar]
  11. Olson, C. M., Liang, Y., Leggett, A., Park, W. D., Li, L., Mills, C. E., ... & Geyer, M. (2019). Development of a selective CDK7 covalent inhibitor reveals predominant cell-cycle phenotype. Cell chemical biology, 26(6), 792–803. [PubMed] [Google Scholar]
  12. Christensen, C. L., Kwiatkowski, N., Abraham, B. J., Carretero, J., Al-Shahrour, F., Zhang, T., ... & Zhang, J. (2014). Targeting transcriptional addictions in small cell lung cancer with a covalent CDK7 inhibitor. Cancer cell, 26(6), 909–922. [PubMed] [Google Scholar]
  13. Fukuyama, T., Ichiki, Y., Yamada, S., Shigematsu, Y., Baba, T., Nagata, Y., ... & Sugio, K. (2007). Cytokine production of lung cancer cell lines: Correlation between their production and the inflammatory/immunological responses both in vivo and in vitro. Cancer Science, 98(7), 1048–1054. [PubMed] [Google Scholar]
  14. Ovadya, Y., & Krizhanovsky, V. (2014). Senescent cells: SASPected drivers of age-related pathologies. Biogerontology, 15(6), 627–642. [PubMed] [Google Scholar]
  15. Petroni, G., Formenti, S. C., Chen-Kiang, S., & Galluzzi, L. (2020). Immunomodulation by anticancer cell cycle inhibitors. Nature Reviews Immunology, 1–11. [PubMed] [Google Scholar]
  16. Malaquin, N., Carrier-Leclerc, A., Dessureault, M., & Rodier, F. (2015). DDR-mediated crosstalk between DNA-damaged cells and their microenvironment. Frontiers in genetics, 6, 94. [PubMed] [Google Scholar]
  17. Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annual Review of Pathology: Mechanisms of Disease, 5, 99–118. [Google Scholar]
  18. Morsy, M. A., Norman, P. J., Mitry, R., Rela, M., Heaton, N. D., & Vaughan, R. W. (2005). Isolation, purification and flow cytometric analysis of human intrahepatic lymphocytes using an improved technique. Laboratory investigation, 85(2), 285–296. [Google Scholar]
  19. Rawstron, A. C. (2006). Immunophenotyping of plasma cells. Current protocols in cytometry, 36(1), 6–23. [Google Scholar]
  20. Oleinika, K., Mauri, C., & Salama, A. D. (2019). Effector and regulatory B cells in immune-mediated kidney disease. Nature Reviews Nephrology, 15(1), 11–26. [PubMed] [Google Scholar]
  21. Cameron, A. L., Kirby, B., & Griffiths, C. E. M. (2003). Circulating natural killer cells in psoriasis. British Journal of Dermatology, 149(1), 160–164. [Google Scholar]
  22. Solano-Gálvez, S. G., Tovar-Torres, S. M., Tron-Gómez, M. S., Weiser-Smeke, A. E., Álvarez-Hernández, D. A., Franyuti-Kelly, G. A., ... & Vázquez-López, R. (2018). Human dendritic cells: ontogeny and their subsets in health and disease. Medical Sciences, 6(4), 88. [Google Scholar]
  23. Chen, K., Liu, J., Heck, S., Chasis, J. A., An, X., & Mohandas, N. (2009). Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proceedings of the National Academy of Sciences, 106(41), 17413–17418. [Google Scholar]
  24. Kim, M. Y., Yu, K. R., Kenderian, S. S., Ruella, M., Chen, S., Shin, T. H., ... & Kozlowski, M. S. (2018). Genetic inactivation of CD33 in hematopoietic stem cells to enable CAR T cell immunotherapy for acute myeloid leukemia. Cell, 173(6), 1439–1453. [PubMed] [Google Scholar]
  25. Sano, K., Yamauchi, K., Hoshi, H., Honma, M., Tamura, G., & Shirato, K. (1997). CD44 expression on blood eosinophils is a novel marker of bronchial asthma. International archives of allergy and immunology, 114(Suppl. 1), 67–71. [PubMed] [Google Scholar]
  26. Gustafson, M. P., Lin, Y., Maas, M. L., Van Keulen, V. P., Johnston, P. B., Peikert, T., ... & Dietz, A. B. (2015). A method for identification and analysis of non-overlapping myeloid immunophenotypes in humans. PloS one, 10(3), e0121546. [Google Scholar]
  27. Collin, M., & Bigley, V. (2018). Human dendritic cell subsets: an update. Immunology, 154(1), 3–20. [PubMed] [Google Scholar]
  28. Agis, H., Beil, W. J., Bankl, H. C., Füreder, W., Sperr, W. R., Ghannadan, M., ... & Valent, P. (1996). Mast Cell-Lineage Versus Basophil Lineage Involvement in Myeloproliferative and Myelodysplastic Syndromes: Diagnostic Role of Cell-Immunopheno typing. Leukemia & lymphoma, 22(3–4), 187–204. [PubMed] [Google Scholar]
  29. Sun, Q., Woodcock, J. M., Rapoport, A., Stomski, F. C., Korpelainen, E. I., Bagley, C. J., ... & Lopez, A. F. (1996). Monoclonal antibody 7G3 recognizes the N-terminal domain of the human interleukin-3 (IL-3) receptor alpha-chain and functions as a specific IL-3 receptor antagonist. [Google Scholar]
  30. Dahl, C., Hoffmann, H. J., Saito, H., & Schiøtz, P. O. (2004). Human mast cells express receptors for IL-3, IL-5 and GM-CSF; a partial map of receptors on human mast cells cultured in vitro. Allergy, 59(10), 1087–1096. [PubMed] [Google Scholar]
  31. Farber, D. L., Yudanin, N. A., & Restifo, N. P. (2014). Human memory T cells: generation, compartmentalization and homeostasis. Nature Reviews Immunology, 14(1), 24–35. [PubMed] [Google Scholar]
  32. Cui, Y., Palii, S. S., Innes, C. L., & Paules, R. S. (2014). Depletion of ATR selectively sensitizes ATM-deficient human mammary epithelial cells to ionizing radiation and DNA-damaging agents. Cell Cycle, 13(22), 3541–3550. [PubMed] [Google Scholar]
  33. Vendetti, F. P., Lau, A., Schamus, S., Conrads, T. P., O’Connor, M. J., & Bakkenist, C. J. (2015). The orally active and bioavailable ATR kinase inhibitor AZD6738 potentiates the anti-tumor effects of cisplatin to resolve ATM-deficient non-small cell lung cancer in vivo. Oncotarget, 6(42), 44289. [PubMed] [Google Scholar]
  34. Tu, W. Z., Li, B., Huang, B., Wang, Y., Liu, X. D., Guan, H., ... & Zhou, P. K. (2013). γH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway. FEBS letters, 587(21), 3437–3443. [PubMed] [Google Scholar]
  35. Stiff, T., O’Driscoll, M., Rief, N., Iwabuchi, K., Löbrich, M., & Jeggo, P. A. (2004). ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer research, 64(7), 2390–2396. [PubMed] [Google Scholar]
  36. Zhang, Z., Yuan, B., Bao, M., Lu, N., Kim, T., & Liu, Y. J. (2011). The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nature immunology, 12(10), 959–965. [PubMed] [Google Scholar]
  37. Unterholzner, L., Keating, S. E., Baran, M., Horan, K. A., Jensen, S. B., Sharma, S., ... & Fitzgerald, K. A. (2010). IFI16 is an innate immune sensor for intracellular DNA. Nature immunology, 11(11), 997–1004. [PubMed] [Google Scholar]
  38. Sun, L., Wu, J., Du, F., Chen, X., & Chen, Z. J. (2013). Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 339(6121), 786–791. [Google Scholar]
  39. Li, X., Shu, C., Yi, G., Chaton, C. T., Shelton, C. L., Diao, J., ... & Li, P. (2013). Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity, 39(6), 1019–1031. [PubMed] [Google Scholar]
  40. Shu, C., Li, X., & Li, P. (2014). The mechanism of double-stranded DNA sensing through the cGAS-STING pathway. Cytokine & growth factor reviews, 25(6), 641–648. [PubMed] [Google Scholar]
  41. Byun, H. O., Lee, Y. K., Kim, J. M., & Yoon, G. (2016). Erratum to: From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep, 49, 641–650. [Google Scholar]
  42. Tchkonia, T., Zhu, Y., Van Deursen, J., Campisi, J., & Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of clinical investigation, 123(3), 966–972. [CrossRef] [PubMed] [Google Scholar]
  43. Olivieri, F., Albertini, M. C., Orciani, M., Ceka, A., Cricca, M., Procopio, A. D., & Bonafè, M. (2015). DNA damage response (DDR) and senescence: shuttled inflamma-miRNAs on the stage of inflamm-aging. Oncotarget, 6(34), 35509. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.