Open Access
Issue
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03043
Number of page(s) 6
Section Chemical Performance Research and Chemical Industry Technology Research and Development
DOI https://doi.org/10.1051/e3sconf/202124503043
Published online 24 March 2021
  1. Virani, S.S., et al., Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation, 2020. 141(9): p. e139-e596. [PubMed] [Google Scholar]
  2. Wang, M., et al., Improved osteogenesis and angiogenesis of magnesium-doped calcium phosphate cement via macrophage immunomodulation. Biomater Sci, 2016. 4(11): p. 1574-1583. [Google Scholar]
  3. Gill, M.L., et al., Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med, 2018. 24(11): p. 1677-1682. [PubMed] [Google Scholar]
  4. Yu, J.R., et al., Current and Future Perspectives on Skin Tissue Engineering: Key Features of Biomedical Research, Translational Assessment, and Clinical Application. Adv Healthc Mater, 2019. 8(5): p. e1801471. [Google Scholar]
  5. Noor, N., et al., 3D Printing of Personalized Thick and Perfusable Cardiac Patches and Hearts. Adv Sci (Weinh), 2019. 6(11): p. 1900344. [Google Scholar]
  6. Ng, S.S., et al., Human iPS derived progenitors bioengineered into liver organoids using an inverted colloidal crystal poly (ethylene glycol) scaffold. Biomaterials, 2018. 182: p. 299-311. [PubMed] [Google Scholar]
  7. Kaminski, M.M., et al., Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol, 2016. 18(12): p. 1269-1280. [PubMed] [Google Scholar]
  8. Barcia Duran, J.G., et al., In vitro conversion of adult murine endothelial cells to hematopoietic stem cells. Nat Protoc, 2018. 13(12): p. 2758-2780. [PubMed] [Google Scholar]
  9. Wang, Y., et al., Conversion of Human Gastric Epithelial Cells to Multipotent Endodermal Progenitors using Defined Small Molecules. Cell Stem Cell, 2016. 19(4): p. 449-461. [Google Scholar]
  10. Bansal, V., et al., Chemical induced conversion of mouse fibroblasts and human adipose-derived stem cells into skeletal muscle-like cells. Biomaterials, 2019. 193: p. 30-46. [PubMed] [Google Scholar]
  11. Cao, N., et al., Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science, 2016. 352(6290): p. 1216-20. [Google Scholar]
  12. Lim, K.T., et al., Direct Conversion of Mouse Fibroblasts into Cholangiocyte Progenitor Cells. Stem Cell Reports, 2018. 10(5): p. 1522-1536. [PubMed] [Google Scholar]
  13. Yang, Y., et al., Rapid and Efficient Conversion of Human Fibroblasts into Functional Neurons by Small Molecules. Stem Cell Reports, 2019. 13(5): p. 862-876. [PubMed] [Google Scholar]
  14. Zhu, Y., et al., Direct conversion of human myoblasts into brown-like adipocytes by engineered super-active PPARgamma. Obesity (Silver Spring), 2015. 23(5): p. 1014-21. [Google Scholar]
  15. Takimoto, A., et al., Direct conversion of tenocytes into chondrocytes by Sox9. Exp Cell Res, 2012. 318(13): p. 1492-507. [PubMed] [Google Scholar]
  16. Cassady, J.P., et al., Direct lineage conversion of adult mouse liver cells and B lymphocytes to neural stem cells. Stem Cell Reports, 2014. 3(6): p. 948-56. [PubMed] [Google Scholar]
  17. Si-Tayeb, K., et al., Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology, 2010. 51(1): p. 297-305. [Google Scholar]
  18. Umezawa, A., et al., Amnion-derived cells as a reliable resource for next-generation regenerative medicine. Placenta, 2019. 84: p. 50-56. [PubMed] [Google Scholar]
  19. Heo, J.S., et al., Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med, 2016. 37(1): p. 115-25. [PubMed] [Google Scholar]
  20. Pavathuparambil Abdul Manaph, N., et al., An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther, 2019. 10(1): p. 293. [Google Scholar]
  21. Dabrowski, F.A., et al., Mesenchymal Stem Cells from Human Amniotic Membrane and Umbilical Cord Can Diminish Immunological Response in an in vitro Allograft Model. Gynecol Obstet Invest, 2017. 82(3): p. 267-275. [PubMed] [Google Scholar]
  22. Mansoor, S.R., E. Zabihi, and M. Ghasemi-Kasman, The potential use of mesenchymal stem cells for the treatment of multiple sclerosis. Life Sci, 2019. 235: p. 116830. [CrossRef] [PubMed] [Google Scholar]
  23. Bier, A., et al., Placenta-derived mesenchymal stromal cells and their exosomes exert therapeutic effects in Duchenne muscular dystrophy. Biomaterials, 2018. 174: p. 67-78. [PubMed] [Google Scholar]
  24. Chulpanova, D.S., et al., Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Front Pharmacol, 2018. 9: p. 259. [PubMed] [Google Scholar]
  25. Munir, F., et al., Current status of diagnosis and Mesenchymal stem cells therapy for acute pancreatitis. Physiol Rep, 2019. 7(21): p. e14170. [PubMed] [Google Scholar]
  26. Baranek, M., W.T. Markiewicz, and J. Barciszewski, Selected small molecules as inducers of pluripotency. Acta Biochim Pol, 2016. 63(4): p. 709-716. [PubMed] [Google Scholar]
  27. Samavarchi-Tehrani, P., et al., Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 2010. 7(1): p. 64-77. [Google Scholar]
  28. Li, R., et al., A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell, 2010. 7(1): p. 51-63. [Google Scholar]
  29. Yang, J., et al., Stat3 activation is limiting for reprogramming to ground state pluripotency. Cell Stem Cell, 2010. 7(3): p. 319-28. [Google Scholar]
  30. Huang, K., et al., Dynamically reorganized chromatin is the key for the reprogramming of somatic cells to pluripotent cells. Sci Rep, 2015. 5: p. 17691. [PubMed] [Google Scholar]
  31. Li, D., et al., Optimized Approaches for Generation of Integration-free iPSCs from Human Urine-Derived Cells with Small Molecules and Autologous Feeder. Stem Cell Reports, 2016. 6(5): p. 717-728. [PubMed] [Google Scholar]
  32. Liu, K., et al., ATG3-dependent autophagy mediates mitochondrial homeostasis in pluripotency acquirement and maintenance. Autophagy, 2016. 12(11): p. 2000-2008. [PubMed] [Google Scholar]
  33. Ma, T., et al., Atg5-independent autophagy regulates mitochondrial clearance and is essential for iPSC reprogramming. Nat Cell Biol, 2015. 17(11): p. 1379-87. [PubMed] [Google Scholar]
  34. Qin, H., A. Zhao, and X. Fu, Small molecules for reprogramming and transdifferentiation. Cell Mol Life Sci, 2017. 74(19): p. 3553-3575. [PubMed] [Google Scholar]
  35. Tang, Y., et al., Direct Conversion of Mouse Fibroblasts into Neural Stem Cells by Chemical Cocktail Requires Stepwise Activation of Growth Factors and Nup210. Cell Rep, 2018. 24(5): p. 1355-1362 e3. [PubMed] [Google Scholar]
  36. Zhou, J., et al., Conversion of human fibroblasts into functional Leydig-like cells by small molecules and a single factor. Biochem Biophys Res Commun, 2019. 516(1): p. 1-7. [Google Scholar]
  37. Liu, C., et al., Conversion of mouse fibroblasts into oligodendrocyte progenitor-like cells through a chemical approach. J Mol Cell Biol, 2019. 11(6): p. 489-495. [PubMed] [Google Scholar]
  38. Kim, Y., et al., Small molecule-mediated reprogramming of human hepatocytes into bipotent progenitor cells. J Hepatol, 2019. 70(1): p. 97-107. [PubMed] [Google Scholar]
  39. Ma, N.X., J.C. Yin, and G. Chen, Transcriptome Analysis of Small Molecule-Mediated Astrocyte-to-Neuron Reprogramming. Front Cell Dev Biol, 2019. 7: p. 82. [PubMed] [Google Scholar]
  40. Kang, H., et al., Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts. Sci Adv, 2016. 2(8): p. e1600691. [PubMed] [Google Scholar]
  41. Chen, Y., N. Kawazoe, and G. Chen, Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Acta Biomater, 2018. 67: p. 341-353. [Google Scholar]
  42. Asghari, F., et al., Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif Cells Nanomed Biotechnol, 2017. 45(2): p. 185-192. [PubMed] [Google Scholar]
  43. Rahman, M.S., et al., Fabrication of biocompatible porous scaffolds based on hydroxyapatite/collagen/chitosan composite for restoration of defected maxillofacial mandible bone. Prog Biomater, 2019. 8(3): p. 137-154. [PubMed] [Google Scholar]
  44. Li, Q., et al., Hydroxyapatite/Collagen Three-Dimensional Printed Scaffolds and Their Osteogenic Effects on Human Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng Part A, 2019. 25(17-18): p. 1261-1271. [PubMed] [Google Scholar]
  45. Yao, Q., et al., Electrospun collagen/poly(L-lactic acid-co-epsilon-caprolactone) scaffolds for conjunctival tissue engineering. Exp Ther Med, 2017. 14(5): p. 4141-4147. [Google Scholar]
  46. Fu, W., et al., Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine, 2014. 9: p. 2335-44. [Google Scholar]
  47. Shu, Y., et al., RoY peptide-modified chitosan-based hydrogel to improve angiogenesis and cardiac repair under hypoxia. ACS Appl Mater Interfaces, 2015. 7(12): p. 6505-17. [Google Scholar]
  48. Wu, Y., et al., Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy. ACS Nano, 2017. 11(6): p. 5646-5659. [Google Scholar]
  49. Lih, E., et al., Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration. ACS Appl Mater Interfaces, 2016. 8(33): p. 21145-54. [Google Scholar]
  50. Trivedi, S., et al., Hydroxyapatite-collagen augments osteogenic differentiation of dental pulp stem cells. Odontology, 2020. 108(2): p. 251-259. [Google Scholar]
  51. Wu, Q., et al., The effect of heparinized decellularized scaffolds on angiogenic capability. J Biomed Mater Res A, 2016. 104(12): p. 3021-3030. [Google Scholar]
  52. Zhou, X., et al., Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int J Nanomedicine, 2018. 13: p. 6265-6277. [Google Scholar]
  53. Hirsch, T., et al., Implant for autologous soft tissue reconstruction using an adipose-derived stem cell-colonized alginate scaffold. J Plast Reconstr Aesthet Surg, 2018. 71(1): p. 101-111. [Google Scholar]
  54. Xu, L., et al., Constructing heparin-modified pancreatic decellularized scaffold to improve its re-endothelialization. J Biomater Appl, 2018. 32(8): p. 1063-1070. [PubMed] [Google Scholar]
  55. Du, C., et al., Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds. Adv Healthc Mater, 2016. 5(16): p. 2080-91. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.