Open Access
Issue
E3S Web Conf.
Volume 245, 2021
2021 5th International Conference on Advances in Energy, Environment and Chemical Science (AEECS 2021)
Article Number 03051
Number of page(s) 8
Section Chemical Performance Research and Chemical Industry Technology Research and Development
DOI https://doi.org/10.1051/e3sconf/202124503051
Published online 24 March 2021
  1. Allsopp, R. C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E. V., Futcher, A. B., . . . Harley, C. B. (1992). Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A, 89(21), 10114-10118. doi:10.1073/pnas.89.21.10114 [PubMed] [Google Scholar]
  2. Barnett, M. A., Buckle, V. J., Evans, E. P., Porter, A. C., Rout, D., Smith, A. G., & Brown, W. R. (1993). Telomere directed fragmentation of mammalian chromosomes. Nucleic Acids Res, 21(1), 27-36. doi:10.1093/nar/21.1.27 [PubMed] [Google Scholar]
  3. Benarroch-Popivker, D., Pisano, S., Mendez-Bermudez, A., Lototska, L., Kaur, P., Bauwens, S., . . . Giraud-Panis, M. J. (2016). TRF2-Mediated Control of Telomere DNA Topology as a Mechanism for Chromosome-End Protection. Mol Cell, 61(2), 274-286. doi:10.1016/j.molcel.2015.12.009 [PubMed] [Google Scholar]
  4. Birch, J., Anderson, R. K., Correia-Melo, C., Jurk, D., Hewitt, G., Marques, F. M., . . . Passos, J. F. (2015). DNA damage response at telomeres contributes to lung aging and chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol, 309(10), L1124-1137. doi:10.1152/ajplung.00293.2015 [PubMed] [Google Scholar]
  5. Boersma, V., Moatti, N., Segura-Bayona, S., Peuscher, M. H., van der Torre, J., Wevers, B. A., . . . Jacobs, J. J. L. (2015). MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5’ end resection. Nature, 521(7553), 537-540. doi:10.1038/nature14216 [PubMed] [Google Scholar]
  6. Chapman, J., Fielder, E., & Passos, J. F. (2019). Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett, 593(13), 1566-1579. doi:10.1002/1873-3468.13498 [PubMed] [Google Scholar]
  7. Coluzzi, E., Leone, S., & Sgura, A. (2019). Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells, 8(1). doi:10.3390/cells8010019 [Google Scholar]
  8. Coppe, J. P., Patil, C. K., Rodier, F., Sun, Y., Munoz, D. P., Goldstein, J., . . . Campisi, J. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol, 6(12), 2853-2868. doi:10.1371/journal.pbio.0060301 [PubMed] [Google Scholar]
  9. de Lange, T. (2009). How telomeres solve the end-protection problem. Science, 326(5955), 948-952. doi:10.1126/science.1170633 [Google Scholar]
  10. de Lange, T., Shiue, L., Myers, R. M., Cox, D. R., Naylor, S. L., Killery, A. M., & Varmus, H. E. (1990). Structure and variability of human chromosome ends. Mol Cell Biol, 10(2), 518-527. doi:10.1128/mcb.10.2.518 [PubMed] [Google Scholar]
  11. de Magalhaes, J. P., & Passos, J. F. (2018). Stress, cell senescence and organismal ageing. Mech Ageing Dev, 170, 2-9. doi:10.1016/j.mad.2017.07.001 [PubMed] [Google Scholar]
  12. Denchi, E. L., & de Lange, T. (2007). Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature, 448(7157), 1068-1071. doi:10.1038/nature06065 [PubMed] [Google Scholar]
  13. Dierick, J. F., Eliaers, F., Remacle, J., Raes, M., Fey, S. J., Larsen, P. M., & Toussaint, O. (2002). Stress-induced premature senescence and replicative senescence are different phenotypes, proteomic evidence. Biochem Pharmacol, 64(5-6), 1011-1017. doi:10.1016/s0006-2952(02)01171-1 [PubMed] [Google Scholar]
  14. Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., . . . et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363 [PubMed] [Google Scholar]
  15. Doksani, Y., Wu, J. Y., de Lange, T., & Zhuang, X. (2013). Super-resolution fluorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell, 155(2), 345-356. doi:10.1016/j.cell.2013.09.048 [PubMed] [Google Scholar]
  16. Farr, C., Fantes, J., Goodfellow, P., & Cooke, H. (1991). Functional reintroduction of human telomeres into mammalian cells. Proc Natl Acad Sci U S A, 88(16), 7006-7010. doi:10.1073/pnas.88.16.7006 [PubMed] [Google Scholar]
  17. Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J. M., . . . d’Adda di Fagagna, F. (2012). Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol, 14(4), 355-365. doi:10.1038/ncb2466 [PubMed] [Google Scholar]
  18. Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., & de Lange, T. (1999). Mammalian telomeres end in a large duplex loop. Cell, 97(4), 503-514. doi:10.1016/s0092-8674(00)80760-6 [CrossRef] [PubMed] [Google Scholar]
  19. Grollman, A. P., & Moriya, M. (1993). Mutagenesis by 8-oxoguanine: an enemy within. Trends Genet, 9(7), 246-249. doi:10.1016/0168-9525(93)90089-z [PubMed] [Google Scholar]
  20. Harley, C. B. (2002). Telomerase is not an oncogene. Oncogene, 21(4), 494-502. doi:10.1038/sj.onc.1205076 [Google Scholar]
  21. Harley, C. B., Futcher, A. B., & Greider, C. W. (1990). Telomeres shorten during ageing of human fibroblasts. Nature, 345(6274), 458-460. doi:10.1038/345458a0 [CrossRef] [PubMed] [Google Scholar]
  22. Hayflick, L. (1965). The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res, 37, 614-636. doi:10.1016/0014-4827(65)90211-9 [CrossRef] [PubMed] [Google Scholar]
  23. Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Exp Cell Res, 25, 585-621. doi:10.1016/0014-4827(61)90192-6 [CrossRef] [PubMed] [Google Scholar]
  24. Hemann, M. T., Strong, M. A., Hao, L. Y., & Greider, C. W. (2001). The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell, 107(1), 67-77. doi:10.1016/s0092-8674(01)00504-9 [PubMed] [Google Scholar]
  25. Hewitt, G., Jurk, D., Marques, F. D., Correia-Melo, C., Hardy, T., Gackowska, A., . . . Passos, J. F. (2012). Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat Commun, 3, 708. doi:10.1038/ncomms1708 [Google Scholar]
  26. Hong, J., & Yun, C. O. (2019). Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells, 8(5). doi:10.3390/cells8050392 [Google Scholar]
  27. Jaskelioff, M., Muller, F. L., Paik, J. H., Thomas, E., Jiang, S., Adams, A. C., . . . Depinho, R. A. (2011). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469(7328), 102-106. doi:10.1038/nature09603 [CrossRef] [PubMed] [Google Scholar]
  28. Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., . . . von Zglinicki, T. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat Commun, 2, 4172. doi:10.1038/ncomms5172 [Google Scholar]
  29. Justice, J. N., Nambiar, A. M., Tchkonia, T., LeBrasseur, N. K., Pascual, R., Hashmi, S. K., . . . Kirkland, J. L. (2019). Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. EBioMedicine, 40, 554-563. doi:10.1016/j.ebiom.2018.12.052 [CrossRef] [PubMed] [Google Scholar]
  30. Kammori, M., Nakamura, K., Kawahara, M., Mimura, Y., Kaminishi, M., & Takubo, K. (2002). Telomere shortening with aging in human thyroid and parathyroid tissue. Exp Gerontol, 37(4), 513-521. doi:10.1016/s0531-5565(01)00178-4 [Google Scholar]
  31. Karlseder, J., Broccoli, D., Dai, Y., Hardy, S., & de Lange, T. (1999). p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2. Science, 283(5406), 1321-1325. doi:10.1126/science.283.5406.1321 [Google Scholar]
  32. Kim, E. C., & Kim, J. R. (2019). Senotherapeutics: emerging strategy for healthy aging and age-related disease. BMB Rep, 52(1), 47-55. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/30526770 [Google Scholar]
  33. Kim, N. W., Piatyszek, M. A., Prowse, K. R., Harley, C. B., West, M. D., Ho, P. L., . . . Shay, J. W. (1994). Specific association of human telomerase activity with immortal cells and cancer. Science, 266(5193), 2011-2015. doi:10.1126/science.7605428 [Google Scholar]
  34. Kohen, R., & Nyska, A. (2002). Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol, 30(6), 620-650. doi:10.1080/01926230290166724 [PubMed] [Google Scholar]
  35. Kuo, C. L., Pilling, L. C., Kuchel, G. A., Ferrucci, L., & Melzer, D. (2019). Telomere length and aging-related outcomes in humans: A Mendelian randomization study in 261,000 older participants. Aging Cell, 18(6), e13017. doi:10.1111/acel.13017 [PubMed] [Google Scholar]
  36. Levy, M. Z., Allsopp, R. C., Futcher, A. B., Greider, C. W., & Harley, C. B. (1992). Telomere end-replication problem and cell aging. J Mol Biol, 225(4), 951-960. doi:10.1016/0022-2836(92)90096-3 [Google Scholar]
  37. Makarov, V. L., Hirose, Y., & Langmore, J. P. (1997). Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell, 88(5), 657-666. doi:10.1016/s0092-8674(00)81908-x [PubMed] [Google Scholar]
  38. Marechal, A., & Zou, L. (2013). DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol, 5(9). doi:10.1101/cshperspect.a012716 [Google Scholar]
  39. Marnett, L. J. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21(3), 361-370. doi:10.1093/carcin/21.3.361 [CrossRef] [PubMed] [Google Scholar]
  40. McElligott, R., & Wellinger, R. J. (1997). The terminal DNA structure of mammalian chromosomes. EMBO J, 16(12), 3705-3714. doi:10.1093/emboj/16.12.3705 [PubMed] [Google Scholar]
  41. Mirman, Z., Lottersberger, F., Takai, H., Kibe, T., Gong, Y., Takai, K., . . . de Lange, T. (2018). 53BP1-RIF1-shieldin counteracts DSB resection through CST-and Polalpha-dependent fill-in. Nature, 560(7716), 112-116. doi:10.1038/s41586-018-0324-7 [PubMed] [Google Scholar]
  42. Nelson, G., Wordsworth, J., Wang, C., Jurk, D., Lawless, C., Martin-Ruiz, C., & von Zglinicki, T. (2012). A senescent cell bystander effect: senescence-induced senescence. Aging Cell, 11(2), 345-349. doi:10.1111/j.1474-9726.2012.00795.x [PubMed] [Google Scholar]
  43. Njajou, O. T., Cawthon, R. M., Damcott, C. M., Wu, S. H., Ott, S., Garant, M. J., . . . Hsueh, W. C. (2007). Telomere length is paternally inherited and is associated with parental lifespan. Proc Natl Acad Sci U S A, 104(29), 12135-12139. doi:10.1073/pnas.0702703104 [PubMed] [Google Scholar]
  44. Nwosu, B. U., Nilsson, O., Mitchum, R. D., Jr., Coco, M., Barnes, K. M., & Baron, J. (2005). Lack of telomere shortening with age in mouse resting zone chondrocytes. Horm Res, 63(3), 125-128. doi:10.1159/000084687 [PubMed] [Google Scholar]
  45. Oikawa, S., Tada-Oikawa, S., & Kawanishi, S. (2001). Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry, 40(15), 4763-4768. doi:10.1021/bi002721g [PubMed] [Google Scholar]
  46. Olovnikov, A. M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol, 41(1), 181-190. doi:10.1016/0022-5193(73)90198-7 [CrossRef] [PubMed] [Google Scholar]
  47. Opresko, P. L., Fan, J., Danzy, S., Wilson, D. M., 3rd, & Bohr, V. A. (2005). Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Res, 33(4), 1230-1239. doi:10.1093/nar/gki273 [PubMed] [Google Scholar]
  48. Palm, W., & de Lange, T. (2008). How shelterin protects mammalian telomeres. Annu Rev Genet, 42, 301-334. doi:10.1146/annurev.genet.41.110306.130350 [CrossRef] [PubMed] [Google Scholar]
  49. Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S., & Campisi, J. (2003). Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol, 5(8), 741-747. doi:10.1038/ncb1024 [CrossRef] [PubMed] [Google Scholar]
  50. Passos, J. F., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., . . . von Zglinicki, T. (2007). Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol, 5(5), e110. doi:10.1371/journal.pbio.0050110 [PubMed] [Google Scholar]
  51. Prowse, K. R., & Greider, C. W. (1995). Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A, 92(11), 4818-4822. doi:10.1073/pnas.92.11.4818 [PubMed] [Google Scholar]
  52. Roos, C. M., Zhang, B., Palmer, A. K., Ogrodnik, M. B., Pirtskhalava, T., Thalji, N. M., . . . Miller, J. D. (2016). Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 15(5), 973-977. doi:10.1111/acel.12458 [CrossRef] [PubMed] [Google Scholar]
  53. Sarek, G., Kotsantis, P., Ruis, P., Van Ly, D., Margalef, P., Borel, V., . . . Boulton, S. J. (2019). CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature, 575(7783), 523-527. doi:10.1038/s41586-019-1744-8 [PubMed] [Google Scholar]
  54. Serra, V., & von Zglinicki, T. (2002). Human fibroblasts in vitro senesce with a donor-specific telomere length. FEBS Lett, 516(1-3), 71-74. doi:10.1016/s0014-5793(02)02504-8 [PubMed] [Google Scholar]
  55. Sfeir, A., Kosiyatrakul, S. T., Hockemeyer, D., MacRae, S. L., Karlseder, J., Schildkraut, C. L., & de Lange, T. (2009). Mammalian telomeres resemble fragile sites and require TRF1 for efficient replication. Cell, 138(1), 90-103. doi:10.1016/j.cell.2009.06.021 [CrossRef] [PubMed] [Google Scholar]
  56. Sfeir, A. J., Chai, W., Shay, J. W., & Wright, W. E. (2005). Telomere-end processing the terminal nucleotides of human chromosomes. Mol Cell, 18(1), 131-138. doi:10.1016/j.molcel.2005.02.035 [PubMed] [Google Scholar]
  57. Sirbu, B. M., Couch, F. B., Feigerle, J. T., Bhaskara, S., Hiebert, S. W., & Cortez, D. (2011). Analysis of protein dynamics at active, stalled, and collapsed replication forks. Genes Dev, 25(12), 1320-1327. doi:10.1101/gad.2053211 [Google Scholar]
  58. Smith, E. M., Pendlebury, D. F., & Nandakumar, J. (2020). Structural biology of telomeres and telomerase. Cell Mol Life Sci, 77(1), 61-79. doi:10.1007/s00018-019-03369-x [PubMed] [Google Scholar]
  59. Takai, H., Smogorzewska, A., & de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Curr Biol, 13(17), 1549-1556. doi:10.1016/s0960-9822(03)00542-6 [PubMed] [Google Scholar]
  60. Takai, K. K., Hooper, S., Blackwood, S., Gandhi, R., & de Lange, T. (2010). In vivo stoichiometry of shelterin components. J Biol Chem, 285(2), 1457-1467. doi:10.1074/jbc.M109.038026 [PubMed] [Google Scholar]
  61. Takai, K. K., Kibe, T., Donigian, J. R., Frescas, D., & de Lange, T. (2011). Telomere protection by TPP1/POT1 requires tethering to TIN2. Mol Cell, 44(4), 647-659. doi:10.1016/j.molcel.2011.08.043 [PubMed] [Google Scholar]
  62. Takubo, K., Izumiyama-Shimomura, N., Honma, N., Sawabe, M., Arai, T., Kato, M., . . . Nakamura, K. (2002). Telomere lengths are characteristic in each human individual. Exp Gerontol, 37(4), 523-531. doi:10.1016/s0531-5565(01)00218-2 [Google Scholar]
  63. Tomaska, L., Nosek, J., Kar, A., Willcox, S., & Griffith, J. D. (2019). A New View of the T-Loop Junction: Implications for Self-Primed Telomere Extension, Expansion of Disease-Related Nucleotide Repeat Blocks, and Telomere Evolution. Front Genet, 10, 792. doi:10.3389/fgene.2019.00792 [PubMed] [Google Scholar]
  64. Toussaint, O., Medrano, E. E., & von Zglinicki, T. (2000). Cellular and molecular mechanisms of stress-induced premature senescence (SIPS) of human diploid fibroblasts and melanocytes. Exp Gerontol, 35(8), 927-945. doi:10.1016/s0531-5565(00)00180-7 [Google Scholar]
  65. von Zglinicki, T. (2002). Oxidative stress shortens telomeres. Trends Biochem Sci, 27(7), 339-344. doi:10.1016/s0968-0004(02)02110-2 [CrossRef] [PubMed] [Google Scholar]
  66. Wallace, S. S. (2002). Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med, 33(1), 1-14. doi:10.1016/s0891-5849(02) 00827-4 [PubMed] [Google Scholar]
  67. Weischer, M., Bojesen, S. E., & Nordestgaard, B. G. (2014). Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet, 10(3), e1004191. doi:10.1371/journal.pgen.1004191 [PubMed] [Google Scholar]
  68. Wu, P., Takai, H., & de Lange, T. (2012). Telomeric 3’ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell, 150(1), 39-52. doi:10.1016/j.cell.2012.05.026 [PubMed] [Google Scholar]
  69. Xu, G., Chapman, J. R., Brandsma, I., Yuan, J., Mistrik, M., Bouwman, P., . . . Rottenberg, S. (2015). REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature, 521(7553), 541-544. doi:10.1038/nature14328 [PubMed] [Google Scholar]
  70. Xue, W., Zender, L., Miething, C., Dickins, R. A., Hernando, E., Krizhanovsky, V., . . . Lowe, S. W. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature, 445(7128), 656-660. doi:10.1038/nature05529 [PubMed] [Google Scholar]
  71. Zhao, H., & Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol, 21(13), 4129-4139. doi:10.1128/MCB.21.13.4129-4139.2001 [PubMed] [Google Scholar]
  72. Zhao, Y., Sfeir, A. J., Zou, Y., Buseman, C. M., Chow, T. T., Shay, J. W., & Wright, W. E. (2009). Telomere extension occurs at most chromosome ends and is uncoupled from fill-in in human cancer cells. Cell, 138(3), 463-475. doi:10.1016/j.cell.2009.05.026 [PubMed] [Google Scholar]
  73. Zimmermann, M., Lottersberger, F., Buonomo, S. B., Sfeir, A., & de Lange, T. (2013). 53BP1 regulates DSB repair using Rif1 to control 5’ end resection. Science, 339(6120), 700-704. doi:10.1126/science.1231573 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.