Open Access
Issue
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 05004
Number of page(s) 8
Section Cost‐optimal Solutions
DOI https://doi.org/10.1051/e3sconf/202124605004
Published online 29 March 2021
  1. “DIRECTIVE (EU) 2018/844 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency (Text with EEA relevance).” [Google Scholar]
  2. International Organization for Standardization, ISO 13822:2010(en), Bases for design of structures — Assessment of existing structures. 2010. [Google Scholar]
  3. Estonian Centre for Standardisation and Accreditation, EVS 908-1:2016 Guidance for calculation of thermal transmittance of building envelope. Part 1: Opaque building envelope in contact with outdoor-air. 2016. [Google Scholar]
  4. Riigi Teataja, RT I, 13.12.2018, 14 Minimum energy performance requirements of buildings. 2018. [Google Scholar]
  5. International Organization for Standardization, ISO 10211:2017 Thermal bridges in building construction — Heat flows and surface temperatures — Detailed calculations. 2017. [Google Scholar]
  6. International Organization for Standardization, ISO 14683:2017 Thermal bridges in building construction — Linear thermal transmittance — Simplified methods and default values. 2017. [Google Scholar]
  7. International Organization for Standardization, ISO 9972:2015 Thermal performance of buildings — Determination of air permeability of buildings — Fan pressurization method. 2015. [Google Scholar]
  8. Estonian Centre for Standardisation and Accreditation, EVS-EN 13187:2001 Thermal performance of buildings - Qualitative detection of thermal irregularities in building envelopes - Infrared method. . [Google Scholar]
  9. International Organization for Standardization, ISO 9869-2:2018 Thermal insulation — Building elements — In-situ measurement of thermal resistance and thermal transmittance — Part 2: Infrared method for frame structure dwelling. 2018. [Google Scholar]
  10. J. M. Brehm, B. W. Eisenhauer, and R. C. Stedman, “Environmental Concern: Examining the Role of Place Meaning and Place Attachment,” Soc. Nat. Resour., vol. 26, no. 5, pp. 522–538, May 2013, doi: 10.1080/08941920.2012.715726. [Google Scholar]
  11. G.-J. HOSPERS, “PLACE MARKETING IN SHRINKING EUROPE: SOME GEOGRAPHICAL NOTES,” Tijdschr. voor Econ. en Soc. Geogr., vol. 102, no. 3, pp. 369–375, Jul. 2011, doi: 10.1111/j.1467-9663.2011.00672.x. [Google Scholar]
  12. G. Jivén and P. J. Larkham, “Sense of place, authenticity and character: A commentary,” J. Urban Des., vol. 8, no. 1, pp. 67–81, Feb. 2003, doi: 10.1080/1357480032000064773. [Google Scholar]
  13. United Nations Environment Programme, “Buildings and climate change: status, challenges and opportunities,” UNEP, 2007. Accessed: Jan. 21, 2021. [Online]. Available: https://wedocs.unep.org/xmlui/handle/20.500.11822/7783. [Google Scholar]
  14. H. Schandl et al., Global Material Flows and Resource Productivity. 2016. [Google Scholar]
  15. F. Kedir and D. M. Hall, “Resource efficiency in industrialized housing construction – A systematic review of current performance and future opportunities,” Journal of Cleaner Production, vol. 286. Elsevier Ltd, p. 125443, Mar. 01, 2021, doi: 10.1016/j.jclepro.2020.125443. [Google Scholar]
  16. International Organization for Standardization, ISO 14040:2006 Environmental management — Life cycle assessment — Principles and framework. 2006. [Google Scholar]
  17. V. Rodrigues, A. A. Martins, M. I. Nunes, A. Quintas, T. M. Mata, and N. S. Caetano, “LCA of constructing an industrial building: Focus on embodied carbon and energy,” in Energy Procedia, Oct. 2018, vol. 153, pp. 420–425, doi: 10.1016/j.egypro.2018.10.018. [Google Scholar]
  18. International Organization for Standardization, ISO 14044:2006 Environmental management — Life cycle assessment — Requirements and guidelines. 2006. [Google Scholar]
  19. P. G. Hammond, C. Jones, E. F. Lowrie, and P. Tse, A BSRIA guide Embodied Carbon The Inventory of Carbon and Energy (ICE). 2011. [Google Scholar]
  20. J. D. Silvestre, J. De Brito, and M. D. Pinheiro, “Life-cycle assessment of thermal insulation materials for external walls of buildings,” Int. Conf. Constr. - Towar. a Better Built Environ., no. October 2015, pp. 303–310, 2011, doi: 10.13140/RG.2.1.1756.7768. [Google Scholar]
  21. R. Carabaño, S. M. Hernando, D. Ruiz, and C. Bedoya, “Life cycle assessment (LCA) of building materials for the evaluation of building sustainability: The case of thermal insulation materials,” Rev. la Constr., vol. 16, no. 1, pp. 22–32, 2017, doi: 10.7764/RDLC.16.1.22. [Google Scholar]
  22. H. Jin and W. Ling, “External wall structure of green rural houses in Daqing, China, based on life cycle and ecological footprint theories,” Front. Archit. Res., vol. 4, no. 3, pp. 212–219, Sep. 2015, doi: 10.1016/j.foar.2015.04.002. [Google Scholar]
  23. A. Konist, “Wood fuel.” http://webcache.googleusercontent.com/search?q=cache:6B6uGhK0QeAJ:staff.ttu.ee/~akonist/sti/MST0120_files/Puitku%25CC%2588tusest.pdf+&cd=1&hl=et&ct=clnk&gl=ee (accessed Jan. 21, 2021). [Google Scholar]
  24. T. Kalamees, Ü. Alev, E. Arumägi, S. Ilomets, A. Just, and U. Kallavus, Maaelamute sisekliima, ehitusfüüsika ja energiasääst I Uuringu I etapi lõpparuanne. 2011. [Google Scholar]
  25. T. Kalamees et al., “Eesti eluasemefondi puitkorterelamute ehitustehniline seisukord ning prognoositav eluiga,” 2011. [Google Scholar]
  26. International Organization for Standardization, ISO 13789:2017 Thermal performance of buildings - Transmission and ventilation heat transfer coefficients - Calculation method. 2017. [Google Scholar]
  27. “Embodied Carbon Footprint Database - Circular Ecology.” https://circularecology.com/embodied-carbon-footprint-database.html (accessed Jan. 21, 2021). [Google Scholar]
  28. M. Hodoušek, M. Böhm, R. L. Lemaster, M. Bureš, J. Beránková, and J. Cvach, “Air permeation rate of oriented strand boards (OSB/3 and OSB/4),” BioResources, vol. 10, no. 1, pp. 1137–1148, 2015, doi: 10.15376/biores.10.1.1137-1148. [Google Scholar]
  29. J. Langmans, R. Klein, and S. Roels, “Langmans, J. et al; B: Air permeability requirements for air barrier materials in passive houses 1 5 th International Symposium on Building and Ductwork Air-tightness Air permeability requirements for air barrier materials in passive houses-Comparison of the air permeability of eight commercial brands of OSB.” Accessed: Jan. 22, 2021. [Online]. Available: www.europanels.org. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.