Open Access
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 06010
Number of page(s) 6
Section Heat Pumps
Published online 29 March 2021
  1. Y. Li, N. Nord, Q. Xiao, T. Tereshchenko, “Building heating applications with phase change material: A comprehensive review,” J. Energy Storage, vol. 31, 2020. [Google Scholar]
  2. Y. Li, N. Nord, G. Huang, X. Li, “Swimming pool heating technology: A state-of-the-art review,” Build. Simul., 2020. [Google Scholar]
  3. Y. Li, N. Zhang, Z. Ding, “Investigation on the energy performance of using air-source heat pump to charge PCM storage tank,” J. Energy Storage, vol. 28, 2020. [Google Scholar]
  4. D. Rohde, T. Andresen, N. Nord, “Analysis of an integrated heating and cooling system for a building complex with focus on long–term thermal storage,” Appl. Therm. Eng., vol. 145, 2018. [Google Scholar]
  5. D. Rohde, B.R. Knudsen, T. Andresen, N. Nord, “Dynamic optimization of control setpoints for an integrated heating and cooling system with thermal energy storages,” Energy, vol. 193, 2020. [Google Scholar]
  6. M. Yu, S. Li, X. Zhang, Y. Zhao, “Techno-economic analysis of air source heat pump combined with latent thermal energy storage applied for space heating in China,” Appl. Therm. Eng., vol. 185, 2021. [Google Scholar]
  7. Y. Li, N. Nord, H. Wu, Z. Yu, G. Huang, “A study on the integration of air-source heat pumps, solar collectors, and PCM tanks for outdoor swimming pools for winter application in subtropical climates,” J. Build. Perform. Simu., vol. 13, 2020. [Google Scholar]
  8. Y. Wang, Z. Ye, Y. Song, X. Yin, F. Cao, “Experimental investigation on the hot gas bypass defrosting in air source transcritical CO2 heat pump water heater,” Appl. Therm. Eng., vol. 178, 2020. [Google Scholar]
  9. F. Cao, Z. Ye, Y. Wang, “Experimental investigation on the influence of internal heat exchanger in a transcritical CO2 heat pump water heater,” Appl. Therm. Eng., vol. 168, 2020. [Google Scholar]
  10. B. Dai, H. Qi, S. Liu, M. Ma, Z. Zhong, H. Li, et al., “Evaluation of transcritical CO2 heat pump system integrated with mechanical subcooling by utilizing energy, exergy and economic methodologies for residential heating,” Energy Convers. Manag., vol. 192, 2019. [Google Scholar]
  11. X. Peng, D. Wang, G. Wang, Y. Yang, S. Xiang, “Numerical investigation on the heating performance of a transcritical CO2 vapor-injection heat pump system,” Appl. Therm. Eng., vol. 166, 2020. [Google Scholar]
  12. F. Cao, Y. Song, M. Li, “Review on development of air source transcritical CO2 heat pump systems using direct-heated type and recirculating-heated type,” Int. J. Refrig., vol. 104, 2019. [PubMed] [Google Scholar]
  13. P.-C. Qi, Y.-L. He, X.-L. Wang, X.-Z. Meng, “Experimental investigation of the optimal heat rejection pressure for a transcritical CO2 heat pump water heater,” Appl. Therm. Eng., vol. 56, 2013. [Google Scholar]
  14. Y. Song, F. Cao, “The evaluation of optimal discharge pressure in a water-precooler-based transcritical CO2 heat pump system,” Appl. Therm. Eng., vol. 131, 2018. [Google Scholar]
  15. Y.-G. Chen, “Optimal heat rejection pressure of CO2 heat pump water heaters based on pinch point analysis,” Int. J. Refrig., vol. 106, 2019. [Google Scholar]
  16. E. Toolbox, “Accuracy of variable-area flow meter,”, 2020. [Google Scholar]
  17. R.J. Moffat, “Describing the uncertainties in experimental results,” Exp. Therm. Fluid Sci., vol. 1, 1988. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.