Open Access
Issue
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 09005
Number of page(s) 8
Section Heating Systems and District Heating
DOI https://doi.org/10.1051/e3sconf/202124609005
Published online 29 March 2021
  1. J. Drgoňa et al., “All you need to know about model predictive control for buildings,” Annual Reviews in Control, vol. 50. Elsevier Ltd, pp. 190–232, Jan. 01, 2020, doi: 10.1016/j.arcontrol.2020.09.001. [Google Scholar]
  2. H. Madsen et al., “Control of Electricity Loads in Future Electric Energy Systems,” in Handbook of Clean Energy Systems, American Cancer Society, 2015, pp. 1–26. [Google Scholar]
  3. A. Q. Santos et al., “Control strategies and algorithms for obtaining energy flexibility in buildings,” 2019. [Google Scholar]
  4. C. A. Thilker, H. Madsen, and J. B. Jørgensen, “Model predictive control based on stochastic differential equations,” in Towards Energy Smart Homes: Algorithms, technologies, and applications, C. Ghiaus, M. Amayri, and S. Ploix, Eds. Springer, 2021. [Google Scholar]
  5. F. Oldewurtel et al., “Use of model predictive control and weather forecasts for energy efficient building climate control,” Energy Build., vol. 45, pp. 15–27, Feb. 2012, doi: 10.1016/j.enbuild.2011.09.022. [Google Scholar]
  6. S. W. Lex, D. Calì, M. Koed Rasmussen, P. Bacher, M. Bachalarz, and H. Madsen, “A cross-disciplinary path to healthy and energy efficient buildings,” Technol. Forecast. Soc. Change, vol. 142, pp. 273–284, May 2019, doi: 10.1016/j.techfore.2018.07.023. [Google Scholar]
  7. P. Bacher and H. Madsen, “Identifying suitable models for the heat dynamics of buildings,” Energy Build., vol. 43, no. 7, pp. 1511–1522, Jul. 2011, doi: 10.1016/j.enbuild.2011.02.005. [Google Scholar]
  8. K. K. Andersen, H. Madsen, and L. H. Hansen, “Modelling the heat dynamics of a building using stochastic differential equations,” Energy Build., vol. 31, no. 1, pp. 13–24, Jan. 2000, doi: 10.1016/S0378-7788(98)00069-3. [Google Scholar]
  9. R. Juhl, N. R. Kristensen, P. Bacher, J. Kloppenborg, and H. Madsen, “CTSM-R User Guide,” 2013. [Google Scholar]
  10. R. Halvgaard et al., “Model predictive control for a smart solar tank based on weather and consumption forecasts,” in Energy Procedia, Jan. 2012, vol. 30, pp. 270–278, doi: 10.1016/j.egypro.2012.11.032. [Google Scholar]
  11. H. A. Schluter, D. Boiroux, N. K. Poulsen, H. Madsen, and J. B. Jorgensen, “Economic Model Predictive Control for Energy Systems in Smart Homes,” CCTA 2019 -3rd IEEE Conf. Control Technol. Appl., pp. 598–604, 2019, doi: 10.1109/CCTA.2019.8920663. [Google Scholar]
  12. M. Diehl et al., “Fast Direct Multiple Shooting Algorithms for Optimal Robot Control,” Fast Motions Biomech. Robot., 2009. [Google Scholar]
  13. C. A. Thilker, R. G. Junker, H. Madsen, D. Cali, and P. Bacher, “Non-Linear Grey-Box Modelling for the Heat Dynamics of Buildings,” Submitt. to Energy Build., 2021. [Google Scholar]
  14. C. G. Bruun, “Optimization of Building Operation using high-resolution sensor data,” no. February, 2019. [Google Scholar]
  15. B. Oksendal, Stochastic differential equations (3rd Ed.): An introduction with applications. Heidelberg: Springer-Verlag, 1992. [Google Scholar]
  16. Y. Pawitan, In all likelihood: statistical modelling and inference using likelihood. Oxford: Clarendon Press, 2006. [Google Scholar]
  17. P. Frogerais, J. J. Bellanger, and L. Senhadji, “Various ways to compute the continuous-discrete extended Kalman filter,” IEEE Trans. Automat. Contr., vol. 57, no. 4, pp. 1000–1004, 2012, doi: 10.1109/TAC.2011.2168129. [Google Scholar]
  18. J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi -A software framework for nonlinear optimization,” 2018. [Google Scholar]
  19. C. A. Thilker, H. Madsen, and J. B. Jørgensen, “Advanced forecasting and disturbance modelling for model predictive control of smart energy systems,” Submitt. to Appl. Energy, 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.