Open Access
E3S Web Conf.
Volume 246, 2021
Cold Climate HVAC & Energy 2021
Article Number 09006
Number of page(s) 7
Section Heating Systems and District Heating
Published online 29 March 2021
  1. European Commission, “2030 climate and energy framework.” Climate Action - European Commission Available: (accessed Jan. 6, 2021). [Google Scholar]
  2. European Commission, “2050 long-term strategy.” Climate Action - European Commission. Available: (accessed Jan. 6, 2021). [Google Scholar]
  3. Finnish Government. Programme of Prime Minister Sanna Marin’s Government (2019, Dec. 10). Inclusive and competent Finland - a socially, economically and ecologically sustainable society. Available at: [Google Scholar]
  4. IEA, “Energy Policies of IEA Countries: Finland 2018 Review – Analysis.” IEA. Available: (accessed Jan. 6, 2021). [Google Scholar]
  5. F. C. Robert, G. S. Sisodia, and S. Gopalan, “A critical review on the utilization of storage and demand response for the implementation of renewable energy microgrids,” Sustainable Cities and Society, vol. 40, pp. 735–745, 2018. [Google Scholar]
  6. S. Salo, A. Hast, J. Jokisalo, R. Kosonen, S. Syri, J. Hirvonen, and K. Martin, “The Impact of Optimal Demand Response Control and Thermal Energy Storage on a District Heating System,” Energies, vol. 12, no. 9, p. 1678, 2019. [Google Scholar]
  7. R. Zafar, A. Mahmood, S. Razzaq, W. Ali, U. Naeem, and K. Shehzad, “Prosumer based energy management and sharing in smart grid,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 1675–1684, 2018. [Google Scholar]
  8. L. Gelazanskas and K. A. Gamage, “Demand side management in smart grid: A review and proposals for future direction,” Sustainable Cities and Society, vol. 11, pp. 22–30, 2014. [Google Scholar]
  9. G. Reynders, R. A. Lopes, A. Marszal-Pomianowska, D. Aelenei, J. Martins, and D. Saelens, “Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage,” Energy and Buildings, vol. 166, pp. 372–390, 2018. [Google Scholar]
  10. R. G. Junker, A. G. Azar, R. A. Lopes, K. B. Lindberg, G. Reynders, R. Relan, and H. Madsen, “Characterizing the energy flexibility of buildings and districts,” Applied Energy, vol. 225, pp. 175–182, 2018. [Google Scholar]
  11. R. D. Coninck and L. Helsen, “Quantification of flexibility in buildings by cost curves – Methodology and application,” Applied Energy, vol. 162, pp. 653–665, 2016. [Google Scholar]
  12. G. Reynders, J. Diriken, and D. Saelens, “Generic characterization method for energy flexibility: Applied to structural thermal storage in residential buildings,” Applied Energy, vol. 198, pp. 192–202, 2017. [Google Scholar]
  13. J. L. Dréau and P. Heiselberg, “Energy flexibility of residential buildings using short term heat storage in the thermal mass,” Energy, vol. 111, pp. 991–1002, 2016. [Google Scholar]
  14. H. Johra, P. Heiselberg, and J. L. Dréau, “Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility,” Energy and Buildings, vol. 183, pp. 325–339, 2019. [Google Scholar]
  15. S. Janne, J. Jokisalo, R. Kosonen, K. Ville, J. Yuchen, and J. Philipp. “Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany.” Energies, vol. 13, no. 23, p. 6296, 2020. [Google Scholar]
  16. B. Vand, K. Martin, J. Jokisalo, R. Kosonen, and A. Hast, “Demand response potential of district heating and ventilation in an educational office building,” Science and Technology for the Built Environment, vol. 26, no. 3, pp. 304–319, 2020. [Google Scholar]
  17. B. Alimohammadisagvand, J. Jokisalo, and K. Sirén, “Comparison of four rule-based demand response control algorithms in an electrically and heat pump-heated residential building,” Applied Energy, vol.209, pp. 167-179, 2018. [Google Scholar]
  18. Sisäilmastoluokitus 2018 (Classification of indoor environment 2018), Sisäilmayhdistys ry (Finnish Society of Indoor Air Quality), 2018). [online]. Available: (In Finnish). [Google Scholar]
  19. Indoor environmental input parameters for design and assessment of energy performance of buildings addressing indoor air quality, thermal environment, lighting and acoustics. SFS- EN 15251. Helsinki: Finnish standards association SFS, 2007. [Google Scholar]
  20. T. Kalamees, K. Jylhä, H. Tietäväinen, J. Jokisalo, S. Ilomets, R. Hyvönen, and S. Saku, “Development of weighting factors for climate variables for selecting the energy reference year according to the EN ISO 15927-4 standard,” Energy and Buildings, vol. 47, pp. 53–60, 2012. [Google Scholar]
  21. Finnish Meteorological institute, “Energialaskennan testivuodet nykyilmastossa (Test years for energy calculation in current climate).” Ilmatieteen laitos. Available: (accessed 11 Sept. 2020). [Google Scholar]
  22. K. Martin, “Demand Response of Heating and Ventilation with in Educational Office Buildings,” Master’s Thesis. Aalto Univ. School of Eng., Dept. of Energy Tech. HVAC, Espoo, Finland, 2017. Available: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.