Open Access
Issue
E3S Web Conf.
Volume 247, 2021
International Conference on Efficient Production and Processing (ICEPP-2021)
Article Number 01015
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202124701015
Published online 05 April 2021
  1. G.D. Vandana, V. Sejian, A.M. Lees, P. Pragna, M.V. Silpa, K.S. Maloney, Heat stress and poultry production: impact and amelioration, International Journal of Biometeorology, 65 (2), 163–179 (2021) [PubMed] [Google Scholar]
  2. L.J. Lara, M.R. Rostagno, Impact of heat stress on poultry production, Animals 3 (2), 356–369 (2013) [CrossRef] [Google Scholar]
  3. Z. Abidin, A. Khatoon, Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress, World’s Poult. Sci. J., 69, 135–151 (2013). [Google Scholar]
  4. V.I. Fisinin, A. Sh. Kavtarashvili, Heat Stress in Poultry. Report II. Methods and techniques for prevention and mitigation (review), Sel’skokhozyaystvennaya biologiya, 50 (4), 431–443 (2015) [Google Scholar]
  5. A. Nawab, F. Ibtisham, G. Li, B. Kieser, J. Wu, W. Liu, Y. Zhao, Y. Nawab, K. Li, M. Xiao, L. An, Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry, Journal of Thermal Biology, 78, 131–139 (2018). [CrossRef] [PubMed] [Google Scholar]
  6. M.R. Farag, M. Alagawany, Physiological alterations of poultry to the high environmental temperature, Journal of Thermal Biology, 76, 101–106 (2018). [PubMed] [Google Scholar]
  7. V.I. Fisinin, A. Sh. Kavtarashvili, Heat Stress in Poultry. Report I. Danger, physiological changes in the body, signs and manifestations (review), Sel’skokhozyaystvennaya biologiya, 50 (2), 162–171 (2015a) [Google Scholar]
  8. P.P. Tsarenko, Improving the quality of poultry products. Food and hatching eggs, Leningrad, Agropromizdat, 240 (1988). [Google Scholar]
  9. E.V. Osipova, Improvement of methods for assessing the strength of the shell of chicken eggs: thesis for the degree of Cand. of agricultural sciences, St. Petersburg, 117 (2017). [Google Scholar]
  10. M. Ketta, E. Tůmová, Eggshell structure, measurements, and quality-affecting factors in laying hens, Czech J. Anim. Sci., 61 (7), 299–309 (2016) [Google Scholar]
  11. A. Kavtarashvili, T. Okolelova, Ways to reduce the breakage and cracking of eggs in industrial poultry farming, Animal feeding and fodder production, 10, 42–47 (2007). [Google Scholar]
  12. P.P. Tsarenko, L.T. Vasilieva, E.V. Osipova, Strength is the main quality of the shell, Poultry and poultry products, 5, 51–54 (2012). [Google Scholar]
  13. Sh.A. Imangulov, A. Sh. Kavtarashvili, M.L. Bebin, Improving the Quality of Eggs, Sergiev Posad, 30 (1999). [Google Scholar]
  14. A. Dhawale, Abnormal eggs cause subnormal profits, World Poult., 24(6), 20 (2008). [Google Scholar]
  15. M. Farmer, Sr., D.A. Ronald, M.K. Eckme, Calcium metabolism in broiler breeder hens. 2. The influence of the time of feeding on calcium status of the digestive system and egg shell quality, Poultry Sci., 62 (3), 465–461 (1983) [Google Scholar]
  16. Y. Nys, J. Gautron, J.M. Garcia-Ruiz, M.T. Hincke, Avian eggshell mineralization: biochemical and functional characterization of matrix proteins, Comptes Rendus Palevol, 3, 549–562 (2004). [Google Scholar]
  17. Y. Nys, J. Gautron, Structure and formation of the eggshell, In: Huopalahti R., Lopez-Fandino R., Anton M., Schade R. (eds): Bioactive Egg Compounds, Springer-Verlag, Berlin, Heidelberg, 99–104 (2007). [Google Scholar]
  18. J.R. Roberts, Factors affecting eggshell and internal egg quality, In: Proc. 18th Annual ASAIM SE Asian Feed Technology and Nutrition Workshop, Le Meridien Siem Reap, Cambodia, 1–9 (2010). [Google Scholar]
  19. C.C. Whitehead, Nutrition and poultry welfare, World’s Poult. Sci. J., 58 (3), 349–356 (2002) [Google Scholar]
  20. V.I. Fisinin, I.A. Egorov, T.M. Okolelova, Sh. A. Imangulov, Scientific Foundations of Poultry Feeding, Sergiev Posad, 352 (2009). [Google Scholar]
  21. F. Bronner, Intestinal calcium absorption: mechanisms and applications, Journal Nutrition, 117 (8), 1347–1352 (1987) [Google Scholar]
  22. L.I. Podobed, Guide to calcium-phosphorus nutrition of farm animals and poultry: monograph, Odessa: Pechatnyi Dom, 410 (2005). [Google Scholar]
  23. S.J. Van Cromphaut, K. Rummens, I. Stockmans, E. Van Herck, F.A. Dijcks, A.G. Ederveen, P. Carmeliet, J. Verhaeghe, R. Bouillon, G. Carmeliet, Intestinal Calcium Transporter Genes Are Upregulated by Estrogens and the Reproductive Cycle Through Vitamin D Receptor-Independent Mechanisms, Journal of Bone and Mineral Research, 18 (10), 1725–1736 (2003) [Google Scholar]
  24. L. Castillo, Y. Tanaka, H.F. DeLuca, M.L. Sunde, The stimulation of 25-hydroxyvitamin D3-1[alpha]- hydroxylase by estrogen, Archives of Biochemistry and Biophysics, 179 (1), 211–217 (1977) [PubMed] [Google Scholar]
  25. D. Wolfenson, Y.F. Frei, A. Berman, Responses of the reproductive vascular system during the eggformation cycle of unanaesthetised laying hens, British Poult. Sci., 23 (5), 425–431 (1982) [Google Scholar]
  26. A. Bar, Differential regulation of calbindin in the calcium-transporting organs of birds with high calcium requirements, Jpn. Poult. Sci., 46 (4), 267–285 (2009) [Google Scholar]
  27. A. Bar, Calcium transport in strongly calcifying laying birds: Mechanisms and regulation Comp (Review), Biochem. Physiol. A Mol. Integr. Physiol., 152 (4), 447–469 (2009a) [Google Scholar]
  28. T.A. Ebeid, T. Suzuki, T. Sugiyama, High ambient temperature influences eggshell quality and calbindin-D28k localization of eggshell gland and all intestinal segments of laying hens, Poultry Sci., 91(9), 2282–2287 (2012). [Google Scholar]
  29. T. Sugiyama, H. Kikuchi, S. Hiyama, K. Nishizawa, S. Kusuhara, Expression and localisation of calbindin D28k in all intestinal segments of the laying hen, Br. Poult. Sci., 48 (2), 233–238 (2007) [PubMed] [Google Scholar]
  30. A. Bar, S. Striem, E. Vax, H. Talpaz, S. Hurwitz, Regulation of calbindin mRNA and calbindin turnover in intestine and shell gland of the chicken, Am. J. Physiol., 262(5), R800–R805 (1992). [Google Scholar]
  31. S. Striem, A. Bar, Modulation of quail intestinal and egg shell gland calbindin (Mr 28,000) gene expression by vitamin D3, 1,25-dihydroxyvitamin D3 and egg laying Mol, Cell. Endocrinol., 75 (2), 169–177 (1991) [Google Scholar]
  32. S. Yosefi, R. Braw-Tal, A. Bar, Intestinal and eggshell calbindin and bone ash as influenced by age of the laying hen and molting Comp, Biochem. Physiol. A Mol. Integr. Physiol., 136 (3), 673–682 (2003) [Google Scholar]
  33. S. Christakos, F. Barletta, M. Huening, P. Dhawan, Y. Liu, A. Porta, X. Peng, Vitamin D target proteins: Function and regulation, J. Cell. Biochem., 88 (2), 238–244 (2003) [PubMed] [Google Scholar]
  34. H. Lin, K. Mertens, B. Kemps, T. Govaerts, B. De Ketelaere, J. De Baerdemaeker, E. Decuypere, J. Buyse, New approach of testing the effect of heat stress on eggshell quality: Mechanical and material properties of eggshell and membrane, Br. Poult. Sci. 45 (7), 476–482 (2004) [PubMed] [Google Scholar]
  35. A.Sh. Kavtarashvili, T.N. Kolokolnikova, Consequences of Heat Stress in Poultry. Methods of prevention, Proceedings of the International Veterinary Congress “Actual veterinary problems in the poultry industry”, Moscow, 129–132 (2013). [Google Scholar]
  36. R.U. Khan, S. Naz, Z. Nikousefat, M. Selvaggi, V. Laudadio, V. Tufarelli, Effect of ascorbic acid in heatstressed poultry, World’s Poult. Sci. J., 68 (3), 477–489 (2012) [Google Scholar]
  37. A.O. Oguntunji, O.M. Alabi, Influence of high environmental temperature on egg production and shell quality: a review, World’s Poult. Sci. J., 66 (4), 739–749 (2010) [Google Scholar]
  38. S.P. He, M.A. Arowolo, R.F. Medrano, S. Li, Q.F. Yu, J.Y. Chen, J.H. He, Impact of heat stress and nutritional interventions on poultry production, World’s Poult. Sci. J., 74 (4), 647–664 (2018) [Google Scholar]
  39. K.P. Mahmoud, M.M. Beck, S.E. Scheideler, M.F. Forman, K.P. Anderson, S.D. Kachman, Acute high environmental temperature and calcium-oestrogen relationship in the hen, Poultry Sci., 75, 1555–1562 (1996). [Google Scholar]
  40. S.A. Borges, A.V. Fischer Da Silva, A. Majorka, D.M. Hooge, K.R. Cummings, Physiological responses of broiler chicken to heat stress and electrolyte balance (sodium plus potassium minus chloride, milliequivalent per kilogram), Poultry Sci., 83(9), 1551–1558 (2004). [Google Scholar]
  41. R.G. Teeter, M.O. Smith, F.N. Owens, C. Arp, S. Sangiah, J.E. Breazile, Chronic heat stress and respiratory alkalosis: occurrence and treatment in broiler chickens, Poultry Sci., 64 (6), 1060–1064 (1985) [Google Scholar]
  42. A. Allahverdi, A. Feizi, H.A. Takhtfooladi, H. Nikpiran, Effects of heat stress on acid-alkali imbalance, plasma calcium concentration, egg production and egg quality in commercial layer, Global Veterinaria, 10 (2), 203–207 (2013) [Google Scholar]
  43. A.Sh. Kavtarashvili, Sh.A. Imangulov, T.M. Okolelova, Possible Solutions to the Problem of Egg Shell Quality in Poultry Farms, Poultry and Poultry Products, 4, 22–25 (2003). [Google Scholar]
  44. I. Rozenboim, E. Tako, O. Gal-Garber, J.A. Proudman, Z. Uni, The effect of heat stress on ovarian function of laying hens, Poultry Sci., 86 (8), 1760–1765 (2007) [Google Scholar]
  45. P.F. Suray, T.I. Fotina, Physiological mechanisms of stress development in poultry farming, Livestock today, 6, 54–60 (2013). [Google Scholar]
  46. T. Belay, C.J. Wiernusz, R.G. Teeter, Mineral balance and urinary and fecal mineral excretion profile of broilers housed in thermoneutral and heat-distressed environments, Poultry Sci., 71 (6), 1043–1047 (1992) [Google Scholar]
  47. S.A. Borges, A.V. Fischer da Silva, J. Ariki, D.M. Hooge, K.R. Cummings, Dietary electrolyte balance for broiler chickens under moderately high ambient temperatures and relative humidities, Poultry Sci., 82(2), 301–308 (2003). [Google Scholar]
  48. A. Pavlik, M. Lichovnikova, P. Jelinek, Blood plasma mineral profile and qualitative indicators of the eggshell in laying hens in different housing systems, Acta Vet. Brno., 78 (3), 419–429 (2009) [Google Scholar]
  49. D. Balnave, I. Yosellewiz, R. Dixon, Physiological changes associated with the production of defective eggshells by hens receiving sodium chloride in the drinking water, British J. of Nutrit., 61 (1), 35–53 (1989) [Google Scholar]
  50. H.V.S. Chauhan, S. Roy, Nutritional Diseases. In: Poultry Diseases Diagnosis and Treatment, 3rd Ed. New Age International (P) Ltd., Publisher New Delhi, 172 (2007). [Google Scholar]
  51. O.A. Elijah, A. Adedapo, The effect of climate on poultry productivity in Ilorin, Kwara State, Nigeria, International J. of Poult. Sci., 5 (11), 1061–1068 (2006) [Google Scholar]
  52. J.L. Robert, Factors affecting egg internal quality and shell quality, Journal of Applied Sci., 41 (3), 161–177 (2004) [Google Scholar]
  53. W.G. Bottie, P.C. Harrison, Celiac cyclic blood flow pattern response to feeding and heat exposure, Poultry Sci., 66 (12), 2039–2042 (1987) [Google Scholar]
  54. M.A. Mitchell, A.J. Carlisle, The effects of chronic exposure to elevated environmental temperature on intestinal morphology and nutrient absorption in the domestic fowl (Gallus domesticus), Comp. Biochem. and Physiol. Part A: Physiology, 101 (1), 137–142 (1992) [Google Scholar]
  55. G.P. Lambert, C.V. Gisolfi, D.J. Berg, P.L. Moseley, L.W. Oberley, K.C. Kregel, Selected contribution: Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress, J. Appl. Physiol., 92 (4), 1750–1761 (2002) [PubMed] [Google Scholar]
  56. T.G. Dinan, J.F. Cryan, Regulation of the stress response by the gut microbiota: Implications for psychoneuroendocrinology, Psychoneuroendocrinology, 37 (9), 1369–1378 (2012) [PubMed] [Google Scholar]
  57. M.H. Rostagno, Effects of heat stress on the gut health of poultry, Journal of Animal Science, 98 (4), 1–9 (2020) [Google Scholar]
  58. A. Bar, E. Vax, S. Striem, Relationships among age, eggshell thickness and vitamin D metabolism and its expression in the laying hen, Comp. Biochem. Physiol. A Mol. Integr. Physiol., 123 (2), 147–154 (1999) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.