Open Access
Issue |
E3S Web Conf.
Volume 251, 2021
2021 International Conference on Tourism, Economy and Environmental Sustainability (TEES 2021)
|
|
---|---|---|
Article Number | 03009 | |
Number of page(s) | 7 | |
Section | Research on Earth Climate and Land and Ocean Resources | |
DOI | https://doi.org/10.1051/e3sconf/202125103009 | |
Published online | 15 April 2021 |
- Jinfeng, W. Xuli, P. (2010) Characteristic of Beijing and Shanghai Inbound Tourists Flow Network. Scientia Geographica Sinica, 15(3): 370–376. [Google Scholar]
- Xiuqiong, C. Fucai, H. (2006) Temporal change of regional disparity in chinese inbound tourism. Acta Geographica Sinica, 61(12): 1271–1280. [Google Scholar]
- HU, S. (2005) Modeling of tourist flow to huangshan. Modern Physics Letters B, 19(28n29): 1691–1694. [Google Scholar]
- Lew, A. Mckercher, B. (2006) Modeling tourist movements: a local destination analysis. Annals of Tourism Research, 33(2): 403–423. [Google Scholar]
- Fabien, G. et al. (2008) Leveraging explicitly disclosed location information to understand tourist dynamics: a case study. Journal of Location Based Services, 2(1): 41–56. [Google Scholar]
- Oender, I. Koerbitz, W. Hubmann-Haidvogel, A. (2016) Tracing tourists by their digital footprints: the case of austria. Journal of Travel Research, 55(5): 566–573. [Google Scholar]
- Ning, C. Xia, P. & Zhou, H. (2016) Popularity analysis of tourist attraction based on geotagged social media big data. Science of Surveying and Mapping, 3(12):67–171 [Google Scholar]
- Tibet Autonomous Region Bureau of Statistics. (2005) Statistical Bulletin of National Economic and Social Development of Tibet Autonomous Region in 2004. Tibet Development Forum, 000(003): 55–56. [Google Scholar]
- Lu, G. Tianling, L. & Xiaohui, W. (2013) The empirical study of domestic tourist’s perceived Tibet tourism lmage. Tourism Science, (02):73–82. [Google Scholar]
- National Bureau of Statistics. (2021) 2020 China Statistical Yearbook. Statistical theory and practice, 01: 2. [Google Scholar]
- Sancho, M.T.M. et al. (2018) Using the spatial knowledge of map users to personalize city maps: a case study with tourists in madrid, spain. International Journal of Geo-Information, 7(8): 1–16. [Google Scholar]
- Yongsai, M. et al. (2018) Multilevel Visualization of Travelogue Trajectory Data. ISPRS International Journal of Geo-Information, 7(1): [PubMed] [Google Scholar]
- Imran, M. et al. (2015) Travel Recommendation Using Geo-tagged Photos in Social Media for Tourist. Wireless Personal Communications, 80(4) 1347–1362. [CrossRef] [Google Scholar]
- Juan, C. Javier, G. & Carmen, M. (2015) Identification of tourist hot spots based on social networks: A comparative analysis of European metropolises using photo-sharing services and GIS. Applied Geography, 63: 408–417. [Google Scholar]
- Kuo, C. Chan, T. Fan, I. et al. (2018) Efficient method for POI/ROI discovery using Flickr geotagged photos. ISPRS International Journal of Geo-Information, 7(3): 121. [Google Scholar]
- Abdul, M. Ling, C. Gencai, C. et al. (2013) A context-aware personalized travel recommendation system based on geotagged social media data mining. International Journal of Geographical Information Science, 27(4): 662–684. [Google Scholar]
- Ruiz, C. Spiliopoulou, M. Menasalvas, E. (2010) Density-based semi-supervised clustering. Data Mining & Knowledge Discovery, 21(3): 345–370. [Google Scholar]
- Cristóbal, C. Ángeles, G. María-Rosa, G. (2016) Social network analysis in tourism. Current Issues in Tourism, 19(12): [Google Scholar]
- Naixia, M. Rongzheng, Y. Tengfei, Y. et al. (2020) Exploring spatio-temporal changes of city inbound tourism flow: The case of Shanghai, China. Tourism Management, 76: [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.