Open Access
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 01013
Number of page(s) 5
Section Power Control Technology and Smart Grid Application
Published online 23 April 2021
  1. Li W, Chen H D, Cui Z T, et al. A configuration method of energy storage device in DC distribution network based on discrete Fourier spectrum analysis[J]. Power System Protection and Control, 2019, 47(07):92–98. [Google Scholar]
  2. Fu S Q, Gao Y, Chen X Y, et al. Research and Project Practice on AC and DC Distribution Network Based on Flexible Substations[J]. Electric Power Construction, 2018, 39(05):46–55. [Google Scholar]
  3. Shao Z, Zou X S, Yuan X F, et al. Review on energy storage application research in the context of flexible distribution network[J]. Electrical Measurement & Instrumentation, 2020, 57(03):86–93. [Google Scholar]
  4. Shen M, Zhang X B. Research on VSC-LVDC with DC Energy Storage to Improve the Stability of Microgrid Connected to Grid Operation[J]. Journal of Northwestern Polytechnical University, 2018, 36(03):528–535. [Google Scholar]
  5. A Y L, A B F, A G L, et al. Optimal distributed generation planning in active distribution networks considering integration of energy storage -ScienceDirect[J]. Applied Energy, 2018, 210:1073–1081. [Google Scholar]
  6. Ma J, Qiao F. A Coordinated Voltage/Var Control in a Hybrid AC/DC Distribution Network[J]. IET Generation Transmission & Distribution, 2020, 14(11). [Google Scholar]
  7. José M. Maza-Ortega, Mauricio J M, Manuel Barragán-Villarejo, et al. Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks[J]. Energies, 2019, 12(19):3591–3601. [Google Scholar]
  8. Zhu Z S, Liu D C, Liao Q F, et al. Optimal Power Scheduling for a Medium Voltage AC/DC Hybrid Distribution Network[J]. Sustainability, 2018, 10(2):318–327. [Google Scholar]
  9. Liu Q, Wang S, Ji X, et al. Power sensitivity models with wide adaptability in active distribution networks considering loops and DC networks[J]. International Transactions on Electrical Energy Systems, 2020, 30. [Google Scholar]
  10. Wang, Li, Zhao, et al. Reduced-Order DC Terminal Dynamic Model for Multi-Port AC-DC Power Electronic Transformer[J]. Energies, 2019, 12(11):2130. [Google Scholar]
  11. Gerber D L, Vossos V, Feng W, et al. A simulation-based efficiency comparison of AC and DC power distribution networks in commercial buildings[J]. Applied Energy, 2018, 210(jan.15):1167–1187. [Google Scholar]
  12. Xie B, Wang J, Jin Y, et al. Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System[J]. JOURNAL OF POWER ELECTRONICS, 2018, 18(4):1211–1222. [Google Scholar]
  13. Bhattacharya A, Kharoufeh J P, Zeng B. Structured Storage Policies for Energy Distribution Networks[J]. IIE Transactions, 2018, 50(8):683–698. [Google Scholar]
  14. Sperstad I, Korpås, Magnus. Energy Storage Scheduling in Distribution Systems Considering Wind and Photovoltaic Generation Uncertainties[J]. Energies, 2019, 12(7). [Google Scholar]
  15. Zheng Y, Meng K, Luo F, et al. Optimal Integration of Mobile/Stationary Battery Energy Storage Systems in Distribution systems with Renewables[J]. IET Renewable Power Generation, 2018, 12(10):258–269. [Google Scholar]
  16. Li, He, Fang, et al. Flexible Voltage Control Strategy Considering Distributed Energy Storages for DC Distribution Network[J]. IEEE Transactions on Smart Grid, 2019, 10(1):163–172. [Google Scholar]
  17. Li Y, Pei X, Yang M, et al. An Advanced Fault Control of Transformerless Modular Multilevel Converters in AC/DC Hybrid Distribution Networks under the Single-phase Grounding Fault[J]. IEEE Transactions on Power Delivery, 2020, PP(99):1–1. [Google Scholar]
  18. Khan M O, Zaman S, Noh C H, et al. A Load Flow Analysis for AC/DC Hybrid Distribution Network Incorporated with Distributed Energy Resources for Different Grid Scenarios[J]. Energies, 2018, 11(2):367–378. [Google Scholar]
  19. Ye C, Miao S, Li Y, et al. Hierarchical Scheduling Scheme for AC/DC Hybrid Active Distribution Network Based on Multi-Stakeholders[J]. Energies, 2018, 11(10). [Google Scholar]
  20. Zhang L, Chen Y, Shen C, et al. Optimal Configuration of Hybrid ACDC Urban Distribution Networks for High Penetration Renewable Energy[J]. IET Generation, Transmission & Distribution, 2018, 12(20):4499–4506. [Google Scholar]
  21. Fu Y, Zhang Z Q, Li Z K. Energy Management for Hybrid AC/DC Distribution System With Microgrid Clusters Using Non-Cooperative Game Theory and Robust Optimization[J]. IEEE Transactions on Smart Grid, 2019, 11(2):1510–1525. [Google Scholar]
  22. A H Q, A W G, B J P, et al. Multi-intervaluncertainty constrained robust dispatch for AC/DC hybrid microgrids with dynamic energy storage degradation[J]. Applied Energy, 2018, 228:205–214. [Google Scholar]
  23. Judge P D, Green T C. Modular Multilevel Converter With Partially Rated Integrated Energy Storage Suitable for Frequency Support and Ancillary Service Provision[J]. IEEE Transactions on Power Delivery, 2019, 34(1):208–219. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.