Open Access
E3S Web Conf.
Volume 252, 2021
2021 International Conference on Power Grid System and Green Energy (PGSGE 2021)
Article Number 03023
Number of page(s) 12
Section Energy Technology Research and Development and Green Energy-Saving Applications
Published online 23 April 2021
  1. Chen C. (2005) Measuring the movement of a research paradigm. Proceedings of Spie the International Society for Optical Engineering, 5669:63–76. [Google Scholar]
  2. Lin D, Chen C, Liu Z. (2011) Study on Zipf-Pareto Distribution of the Betweenness Centrality of a Co¬citation Network. Journal Of The China Society For Scientific And Technical Information, 30(1):76–82. [Google Scholar]
  3. Groll M, Khandekar S. (2002) Pulsating heat pipes: A challenge and still unsolved problem in heat pipe science. Archives of Thermodynamics, 23(4):17–28. [Google Scholar]
  4. Khandekar S, Groll M. (2004) Pulsating heat pipes: Attractive entrants in the family of closed two-phase systems. J. Energy Heat Mass Transfer, 26:99–115. [Google Scholar]
  5. Derek J D S P. (1965) Networks of Scientific Papers. Science, 149(3683):510–515. [CrossRef] [PubMed] [Google Scholar]
  6. Garfield E. (1994) Research fronts. Current Contents, 4l(10):3–7. [Google Scholar]
  7. Chen C. (2006) CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. Journal of the American Society for Information Science and Technology, 57(3):359–377. [Google Scholar]
  8. Wang S, Huo J, Zhang X, et al. (2012) Experimental study on operating parameters of miniature loop heat pipe with flat evaporator. Applied Thermal Engineering, 40:318–325. [Google Scholar]
  9. Hamdan M, Cytrynowicz D, Medis P, et al. (2002) Loop heat pipe (LHP) development by utilizing coherent porous silicon (CPS) wicks. In: Thermal & Thermomechanical Phenomena in Electronic Systems. USA. pp.457–465. [Google Scholar]
  10. Esarte J, Blanco J M, Bernardini A, et al. (2017) Optimizing the design of a two-phase cooling system loop heat pipe: Wick manufacturing with the 3D selective laser melting printing technique and prototype testing. Applied Thermal Engineering, 111:407–419. [Google Scholar]
  11. Wang Y, Cen J, Zhu X, et al. (2012) Experimental study on the heat transfer performance of a loop heat pipe. Journal of Optoelectronics·Laser, 08:1458–1462. [Google Scholar]
  12. Wang D, Liu Z, Shen J, et al. (2014) Experimental study of the loop heat pipe with a flat disk-shaped evaporator. Experimental Thermal and Fluid Science, 57:157–164. [CrossRef] [Google Scholar]
  13. Gai D, Liu Z, Liu W, et al. (2009) Characteristics of temperature oscillation in miniature loop heat pipe with flat evaporator. CIESC Journal, 06:1390–1397. [Google Scholar]
  14. Xue Q, JI X, Abanda A, et al. (2012) Heat Transfer Performance of Air Cooling Type Loop Heat Pipe With Compressed Foam Metal as Capillary Layers. Proceedings of the Chinese Society for Electrical Engineering, 32:58–63. [Google Scholar]
  15. Riehl R R, Siqueira T C P A. (2006) Heat transport capability and compensation chamber influence in loop heat pipes performance. Applied Thermal Engineering, 26(11–12):1158–1168. [Google Scholar]
  16. Santos P H D, Bazzo E, Oliveira A A M. (2012) Thermal performance and capillary limit of a ceramic wick applied to LHP and CPL. Applied Thermal Engineering, 41:92–103. [Google Scholar]
  17. Celata G P, Cumo M, Furrer M. (2010) Experimental tests of a stainless steel loop heat pipe with flat evaporator. Experimental Thermal and Fluid Science, 34(7):866–878. [Google Scholar]
  18. Tang Y, Zhou R, Lu L, et al. (2012) Anti-Gravity Loop-shaped heat pipe with graded pore-size wick. Applied Thermal Engineering, 36:78–86. [Google Scholar]
  19. Zhang H, Lin G, Cao J, et al. (2003) Ground-experimental study on the performance of Loop Heat Pipes. Journal Of Astronautics, 05:468–472. [Google Scholar]
  20. et al. (2007) Modulated wick heat pipe. International Journal of Heat and Mass Transfer, 50(7):1420–1434. [Google Scholar]
  21. Yeh C, Chen C, Chen Y. (2009) Heat transfer analysis of a loop heat pipe with biporous wicks. International Journal of Heat and Mass Transfer, 52(19):4426–4434. [Google Scholar]
  22. Semenic T, CAtton I. (2009) Experimental study of biporous wicks for high heat flux applications. International Journal of Heat and Mass Transfer, 52(21):5113–5121. [Google Scholar]
  23. Xu J, Zhang L, Xu H, et al. (2014) Experimental investigation and visual observation of loop heat pipes with two-layer composite wicks. International Journal of Heat and Mass Transfer, 72:378–387. [CrossRef] [Google Scholar]
  24. Li Q, Zhou H, Xuan Y. (2008) Investigation On Heat Transfer Characteristics Of Composite Capillary Evaporator. Journal Of Engineering Thermophysics, 01:148–150. [Google Scholar]
  25. Xu J, Zou Y, Cheng L. (2012) Pore Structure Optimization and Properties of Composite Wicks for Loop Heat Pipes. Proceedings of the Chinese Society for Electrical Engineering, 23:70–74. [Google Scholar]
  26. Tong B Y, Wong T N, Ooi K T. (2001) Closed-loop pulsating heat pipe. Applied Thermal Engineering, 21(18):1845–1862. [Google Scholar]
  27. Khandekar S, Charoensawan P, Groll M, et al. (2003) Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling. Applied Thermal Engineering, 23(16):2021–2033. [Google Scholar]
  28. Zhang Y, Faghri A. (2002) Heat transfer in a pulsating heat pipe with open end. International Journal of Heat and Mass Transfer, 45(4):755–764. [Google Scholar]
  29. Yang W, Zhang Z, Ma T. (2001) Flow visualization Of Looped Pulsating Heat Pipe. Journal Of Engineering Thermophysics, 01:117–120. [Google Scholar]
  30. Qu W, Ma T. (2002) Experimental Investigation On Flow And Heat Transfer Of Pulsating Heat Pipe. Journal Of Engineering Thermophysics, 05:596–598. [Google Scholar]
  31. Yang H, Sameer K, Manfred G. (2007) Experimental Investigation of the Flow Patterns in a Single Closed Loop Pulsating Heat Pipe. Fluid Machinery, 01:60–63. [Google Scholar]
  32. Cao X, Wang W, Chen J, et al. (2007) Experimental investigation on flow and heat transfer of pulsating heat pipe. Journal Of Thermal Science And Technology, 01:56–59. [Google Scholar]
  33. Xu R, Wang R, Cong W, et al. (2007) Design of Pulsating Heat Pipe Experiment Rig and Visual Experiment Study. Fluid Machinery, 06:59–61. [Google Scholar]
  34. Qu J, Wu H, Wang Q. (2012) Experimental Investigation of Silicon-Based Micro-Pulsating Heat Pipe for Cooling Electronics. Nanoscale and Microscale Thermophysical Engineering, 16(1):37–49. [Google Scholar]
  35. Qu J, Wu H, Zheng P. (2010) Flow Visualization Of Silicon-based micro pulsating heat pipes. Sci China Tech Sci, 05:575–581. [Google Scholar]
  36. Qu J, Wu H. (2011) Thermal performance of micro pulsating heat pipe. CIESC Journa, 11:3046–3052. [Google Scholar]
  37. Youn Y J, Kim S J. (2012) Fabrication and evaluation of a slicon-based micro pulsating heat spreader. Sensors and Actuators A: Physical, 174:189–197. [Google Scholar]
  38. Choi, S.U.S. (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 66: 99–105. [Google Scholar]
  39. Wu J, Zhao J. (2013) A review of nanofluid heat transfer and critical heat flux enhancement— Research gap to engineering application. Progress in Nuclear Energy, 66:13–24. [Google Scholar]
  40. Li X, Shi Z, Wang S, et al. (2012) Analysis of structural parameters of grooved-wicksin micro heat pipes based on capillary limits. Key Engineering Materials, 499: 21–26. [Google Scholar]
  41. Y.M. Hung, Seng Q. (2011) Effects of geometric design on thermal performance of star-groove micro-heat pipes. International Journal of Heat and Mass Transfer, 54(5):1198–1209. [Google Scholar]
  42. Ha J M, Peterson G P. (1998) The Heat Transport Capacity of Micro Heat Pipes. Journal of Heat Transfer, 120(4):1064–1071. [Google Scholar]
  43. Sartre V, Zaghdoudi M C, Lallemand M. (2000) Effect of interfacial phenomena evaporative heat transfer in micro heat pipes International Journal of Thermal Sciences, 39(4):498–504. [Google Scholar]
  44. Suman B. (2008) Effects of a surface-tension gradient on the performance of a micro-grooved heat pipe: an analytical study. Microfluidics and Nanofluidics, 5(5):655. [Google Scholar]
  45. Grover G M, Cotter T P, Erickson G F. (1964) Structures of Very High Thermal Conductance. Journal of Applied Physics, 35(6):1990–1991. [Google Scholar]
  46. C. G, Y. A, N. C, et al. (2003) Silicon heat pipes used thermal spreaders. IEEE Transactions mponents and Packaging Technologies, 26(2):332–339. [Google Scholar]
  47. Liu Y, Liu H, Xiao H. (2009) The numerical simulation on heat transfer performance of rectangular micro channel plate heat pipe. Cryogenics And Superconductivtty, 03:40–44. [Google Scholar]
  48. Wan Y, Yan K, Dong S, et al. (2015) Review on Flat Micro-heat Pipe Technology. Electro-Mechanical Engineering, 05:5–10. [Google Scholar]
  49. Tang Q, Xu J, Li Y, et al. (2006) An Experimental Study of the Heat Transfer Performance of Innovative Micro Heat Pipes. Journal Of Engineering For Thermal Energy And Power, 04:350–354. [Google Scholar]
  50. Fan C, Qu W, Sun F, et al. (2004) The Influence of Gravitation on the Heat Transfer Performance of Micro-grooved Flat-plate Heat Pipes. Journal Of Engineering For Thermal Energy And Power, 01:33–37. [Google Scholar]
  51. LI W, LI J, Li Z, et al. (2017) Effect of Rectangle Micro-Grooves Structure on Heat Transfer Characteristics of Flat Heat Pipes. Journal of En¬gineering for Thermal Energy& Power, 32(02):42–46. [Google Scholar]
  52. Li X, Qu J, Han X, et al. (2016) Start-up and heat transfer performance of micro-grooved oscillating heat pipe. CIESC Jorunal, 06:2263–2270. [Google Scholar]
  53. Alvani-Soltani S R, Ravigururajan T S, Rezac M. (2011) A critical review of thermal Issues in lithium-ion batteries. Journal of the Electrochemical Society, 158(03): 1–25. [Google Scholar]
  54. Zhang G, Wu Z, Rao Z, et al. (2009) Experimental invesitigation on heat pipe cooling effect for power battery. Chemical Industry and Engineering Progress, 07:1165–1168. [Google Scholar]
  55. Rao Z, Wang S, Wu M, et al. (2013) Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Conversion and Management, 65:92–97. [Google Scholar]
  56. Wu M, Liu K, Wang Y, et al. (2002) Heat dissipation design for lithium-ion batteries. Journal of Power Sources, 109(1):160–166. [Google Scholar]
  57. Jang J, Rhi S H. (2010) Battery thermal management system of future electric vehicles with loop thermosyphon. In: US-Korea Conference on Science, Technology, and Entrepreneurship(UKC). New Jersey. [Google Scholar]
  58. Zhang W. (2013) Research of miniature flat loop heat pipe on the heat dissipation of electric vehicle battery. South China University of Technology. [Google Scholar]
  59. Hu X. (2012) Study on capacity of heat dissipation for Electric Vehicle Lithium ion battery based on inorganic superconductivity heat pipe. Hu Nan University. [Google Scholar]
  60. Zhao J, Lv P, Rao Z. (2017) Experimental study on the thermal management performance of phase change material coupled with heat pipe for cylindrical power battery pack. Experimental Thermal and Fluid Science, 82:182–188. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.