Open Access
E3S Web Conf.
Volume 255, 2021
International Conference on Sustainable, Circular Management and Environmental Engineering (ISCMEE 2021)
Article Number 01013
Number of page(s) 12
Published online 03 May 2021
  1. Rossana-Brantes, A., & Olivares, G. (2008). Best practices and efficient use of water in the mining industry, Chilean Copper Commission, Quebecor World Chile. [Google Scholar]
  2. Jennett, J., & Wixson, B. (1983). Geochemistry, mining and the environment. Minerals and the Environment, 5, 39–53. [Google Scholar]
  3. Meng, X., Wu, J., Kang, J., Gao, J., Liu, R., Gao, Y., Wang, R., Fan, R., Khoso, S. A., Sun, W., & Hu Y. (2018). Comparison of the reduction of chemical oxygen demand in wastewater from mineral processing using the coagulation–flocculation, adsorption and Fenton processes. Minerals Engineering, 128, 275–283. [Google Scholar]
  4. Gunson, A. J., Klein, B., Veiga, M., & Dunbar, S. (2012). Reducing mine water requirements. Journal of Cleaner Production, 21(1), 71–82. [Google Scholar]
  5. USGS. (2016). Water Science School. [Google Scholar]
  6. United Nations World Water Assessment Programme. (2018). The United Nations World Water Development Report 2018: Nature-Based Solutions for Water, UNESCO, Paris [Google Scholar]
  7. Neumann M. (2018). Challenges and opportunities in the path towards sustainable development of mineral resources. EGRC 9th session - UNECE, Geneva [Google Scholar]
  8. Xu, Y, Lay, J. P. & Korte F. (1988). Fate and effects of xanthates in laboratory freshwater systems. Bulletin of Environmental Contamination and Toxicology, 41(5), 683–689. [Google Scholar]
  9. Boening, D. W. (1998). Aquatic toxicity and environmental fate of xanthates. SME Transactions, 304, 50–57. [Google Scholar]
  10. Panayotov, V., & Panayotova, M. (2019). Sustainable use of water in mining and mineral processing. In V. Kalinichenko & R. Moraru (Eds.) Sustainable development of resource-saving technologies in mineral mining and processing. (pp. 214–243). UNIVERSITAS Publishing, Petroșani, Romania [Google Scholar]
  11. Rao, S., & Finch, J. (1989). A review of water re-use in flotation. Minerals Engineering, 2, 65–85.–6875(89)90066–6 [Google Scholar]
  12. Johnson, N.W. (2003). Issue in maximization of recycling of water in a mineral processing plant. In Proceedings of the Water in mining conference (pp. 239–245), Brisbane, Australia, 13–15 Oct 2003 [Google Scholar]
  13. Nedved M., & Jansz, J. (2006). Waste water pollution control in the Australian mining industry. Journal of Cleaner Production, 14 (12–13), 1118–1120. [Google Scholar]
  14. Liu, W., Moran, C. J., & Vink. S. (2013). A review of the effect of water quality on flotation. Minerals Engineering, 53, 91–100. [Google Scholar]
  15. Shengo, L. M., & Mutiti, W. N. C. (2016). Bio-treatment and water reuse as feasible treatment approaches for improving wastewater management during flotation of copper ores. International Journal of Environmental Science and Technology, 13, 2505–2520. DOI 10.1007/s13762–016–1073–5 [Google Scholar]
  16. Levay, G., Smart, R., & Skinner., W. (2001). The impact of water quality on flotation performance. Journal of the Southern African Institute of Mining and Metallurgy, 111, 69–76 III–IV.–6326(08)60294–0 [Google Scholar]
  17. Chen J.-m., Liu R.-q., Sun, W., & Qiu, G.-z. (2009). Effect of mineral processing wastewater on flotation of sulfide minerals. Transactions of Nonferrous Metals Society of China, 19(2), 454–457.–6326(08)60294–0 [Google Scholar]
  18. Sandenbergh R. F., & Wei, Y. (2007). The influence of water quality on the flotation of the Rosh Pinah complex lead-zinc sulfides. Proc. of the 4th Southern African Conference on base metals. (pp. 45–55) The South African Institute of Mining and Metallurgy, SA [Google Scholar]
  19. Lin, S., Liu, R., Wu, M., Hu, Y., Sun, W., Shi, Z., Han, H., & Li, W. (2020). Minimizing beneficiation wastewater through internal reuse of process water in flotation circuit. Journal of Cleaner Production, 245. [Google Scholar]
  20. Ikumapayi, F., & Rao, K. H. (2015). Recycling process water in complex sulfide ore flotation: effect of calcium and sulfate on sulfide minerals recovery. Mineral Processing and Extractive Metallurgy Review, 36 (1), 45–64. [Google Scholar]
  21. Fu, P., Lin, X., Li, G., Chen Z., & Peng, H. (2018). Degradation of Thiol Collectors Using Ozone at a Low Dosage: Kinetics, Mineralization, Ozone Utilization, and Changes of Biodegradability and Water Quality Parameters. Minerals, 8, 477. [Google Scholar]
  22. Li, M., Zhong, H., He, Z., Hu, L., Sun, W., Loganathan, P., & Xiong, D. (2020). Degradation of various thiol collectors in simulated and real mineral processing wastewater of sulfide ore in heterogeneous modified manganese slag/PMS system. Chemical Engineering Journal, [Google Scholar]
  23. Park, J., Han, Y.-S., & Ji, S.-W. (2018). Investigation of Mineral-Processing Wastewater Recycling Processes: A Pilot Study. Sustainability, 10(9), 3069. [Google Scholar]
  24. Rezaei, R., Massinaei, M., & Zeraatkar Moghaddam, A. (2018). Removal of the residual xanthate from flotation plant tailings using modified bentonite. Minerals Engineering, 119, 1–10. [Google Scholar]
  25. Lin, W. X., Tian, J., Ren, J., Xu, P.T., Dai, Y.K., Sun, S.Y., & Wu, C. (2016). Oxidation of aniline aerofloat in flotation wastewater by sodium hypochlorite solution. Environmental Science and Pollution Research, 23, 785–792.–015–5319–4 [Google Scholar]
  26. Meng, X., Khoso, S. A., Lyu, F., Wu, J., Kang, J., Liu, H., Zhang, Q., Han, H., Sun, W., & Y. Hu, (2019). Study on the influence and mechanism of sodium chlorate on COD reduction of minerals processing wastewater. Minerals Engineering, 134, 1–6. [Google Scholar]
  27. Meng, X., Khoso, S. A., Wu, J., Tian, M., Kang, J., Liu, H., Zhang, Q., Sun, W., & Hu, Y. (2019). Efficient COD reduction from sulfide minerals processing wastewater using Fenton process. Minerals Engineering, 132, 110–112. [Google Scholar]
  28. Chen, S. H., Gong, W.Q., Mei, G.J., Zhou, Q., Bai, C.P., & Xu, N. (2011). Primary biodegradation of sulfide mineral flotation collectors. Minerals Engineering, 24, 953–955. [Google Scholar]
  29. Jafari, M., Shafaei, S. Z. A., Abdollahi, H., Gharabaghi, M., & Chelgani, S. C. (2017). A comparative study on the effect of flotation reagents on growth and iron oxidation activities of Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans. Minerals, 7(1), 2. [Google Scholar]
  30. Liu, R. Q., Sun, W., Ouyang, K., Zhang, L. M., & Hu, Y. H. (2015). Decomposition of sodium butyl xanthate (SBX) in aqueous solution by means of OCF: Ozonator combined with flotator. Minerals Engineering, 70, 222–227. [Google Scholar]
  31. Wu, M., Hu, Y., Liu, R., Lin, S., Sun, W., & Lu, H. (2019). Electrocoagulation method for treatment and reuse of sulphide mineral processing wastewater: Characterization and kinetics. Science of the Total Environment, 696, 134063. [Google Scholar]
  32. Mamelkina, M. A., Tuunila, R., Sillänpää, M., & Häkkinen, A. (2019). Systematic study on sulfate removal from mining waters by electrocoagulation. Separation and Purification Technology, 216, 43–50. [Google Scholar]
  33. Mamelkina, M. A., Vasilyev, F., Tuunila, R., Sillänpää, M., & Häkkinen, A. (2019). Investigation of the parameters affecting the treatment of mining waters by electrocoagulation. Journal of Water Process Engineering, 32, Article 100929. [Google Scholar]
  34. Jing, G., Ren, S., Gao, Y., Sun, W., & Gao, Z. (2020). Electrocoagulation: a promising method to treat and reuse mineral processing wastewater with high COD. Water, 12, Article 134063. [Google Scholar]
  35. Das, D., & Nandi B. K. (2021). Treatment of iron ore beneficiation plant process water by electrocoagulation. Arabian Journal of Chemistry, 14, Article 102902. [Google Scholar]
  36. Panayotova, M., & Panayotov, V. (2004). An electrochemical method for decreasing the concentration of sulfate and molybdenum ions in industrial wastewater. Journal of Environmental Science and Health, Part A, A39(1), 173–183. [Google Scholar]
  37. Panayotov, V., Panayotova, M., Mitrov, Ts., Gock, E., & Zommer, P. (2001). Heavy metals removal from wastewater through electrochemical treatment. Journal of Chemical Technology and Metallurgy, XXXVI, 1, 81–86. [Google Scholar]
  38. Panayotov V., & Panayotova M., (2006). Electrochemical selection of polymetallic ores. In G. Onal (Ed.) Proc. XXIII International Mineral Processing Congress (pp. 675–677). IMPC [Google Scholar]
  39. Körbahti, B. K. & Artut, K. (2010). Electrochemical oil/water demulsification and purification of bilge water using Pt/Ir electrodes. Desalination, 258(1–3), 219–228. [Google Scholar]
  40. Vepsälänen, M, Pulliainen, M, & Sillanpää, M. (2012). Effect of electrochemical cell structure on natural organic matter (NOM) removal from surface water through electrocoagulation (EC). Separation and Purification Technology, 99, 20–27. [Google Scholar]
  41. An, C., Huang, G., Yao, Y., & Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of the Total Environment, 579, 537–556. [Google Scholar]
  42. Changmai, M., Pasawan, M., & Purkait, M. K. (2019). Treatment of oily wastewater from drilling site using electrocoagulation followed bymicrofiltration. Separation and Purification Technology, 210, 463–472. [Google Scholar]
  43. Nidheesh, P.V., Scaria, J., Babu, D. S., & Kumar, M. S. (2021). An overview on combined electrocoagulation-degradation processes for the effective treatment of water and wastewater. Chemosphere, 263, Article 127907. [Google Scholar]
  44. Tegladza, I. D., Xu, Q., Xu, K., Lv, G., & Lu J. (2021). Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal. Process Safety and Environmental Protection, 146 169–189. [Google Scholar]
  45. Garcia-Segura, S., Eiband, M. M. S.G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299. [Google Scholar]
  46. Ganiyu, S. O., Martínez-Huitle, C. A., & Oturan, M. A. (2021). Electrochemical advanced oxidation processes for wastewater treatment: Advances in formation and detection of reactive species and mechanisms. Current Opinion in Electrochemistry, 27, Article 100678. [Google Scholar]
  47. Brillas, E. (2021). Recent development of electrochemical advanced oxidation of herbicides. A review on its application to wastewater treatment and soil remediation. Journal of Cleaner Production, 290, Article 125841. [Google Scholar]
  48. ISO 20236:2018 Water quality - Determination of total organic carbon (TOC), dissolved organic carbon (DOC), total bound nitrogen (TNb) and dissolved bound nitrogen (DNb) after high temperature catalytic oxidative combustion, 02-Oct-2018. [Google Scholar]
  49. Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22, 154–169 [Google Scholar]
  50. Zhang, Y., Zhao, E., Cui, X., Zhu, W., Han, X., Yu, G., & Wang, Y. (2021). Removal of organic compounds from shale gas fracturing flowback water by an integrated electrocoagulation and electro-peroxone process. Separation and Purification Technology, 265, Article 118496 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.