Open Access
Issue
E3S Web Conf.
Volume 256, 2021
2021 International Conference on Power System and Energy Internet (PoSEI2021)
Article Number 02001
Number of page(s) 7
Section Energy Internet R&D and Smart Energy Application
DOI https://doi.org/10.1051/e3sconf/202125602001
Published online 10 May 2021
  1. Li Jianlin, Ji Tianming, Kong Lingda, et al. Span Determining of Photovoltaic Generation Data Mining[J]. TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, 2015, 30(14): 450–456(in Chinese). [Google Scholar]
  2. S. C. Kaushik, V. S. Reddy, S. K. Tyagi Energy and exergy analyses of thermal power plants: a review Renew. Sustain. Energy Rev., 15 (4) (2011), pp. 1857-1872. [Google Scholar]
  3. Gong Yingfei, Lu Zongxiang, Qiao Ying, et al. An Overview of Photovoltaic Energy System Output Forecasting Technology[J]. Automation of Electric Power Systems, 2016, 40(04): 140–151 (in Chinese). [Google Scholar]
  4. A. Saez-de-Ibarra, A. Milo, H. Gaztañaga, V. Debusschere, and S. Bacha, “Co-optimization of storage system sizing and control strategy for intelligent photovoltaic power plants market integration,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1749–1761, Oct. 2016. [Google Scholar]
  5. Ding M, Liu Z, Bi R, Zhu W. Photovoltaic Output Prediction Based on Grey System Correction-Wavelet Neural Network[J]. Power System Technology, 2015, 39(09):2438-2443(in Chinese). [Google Scholar]
  6. H. Wang, H. Yi, J. Peng, G. Wang, Y. Liu, H. Jiang, and W. Liu, “Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network,” Energy Convers. Manage., vol. 153, pp. 409–422, Dec. 2017. [Google Scholar]
  7. F. Xu, Y. Tian, Z. Wang and J. Li, “One-day Ahead Forecast of PV Output Based on Deep Belief Network and Weather Classification,” 2018 Chinese Automation Congress (CAC), Xi’an, China, 2018, pp. 412-417, doi: 10. 1109/CAC. 2018. 8623312. [Google Scholar]
  8. K. Yan, X. Wang, Y. Du, N. Jin, H. Huang, and H. Zhou, “Multi-step shortterm power consumption forecasting with a hybrid deep learning strategy, ” Energies, vol. 11, no. 11, p. 3089, Nov. 2018. [Google Scholar]
  9. Zhang Q, Ma Y, Li G, Ma J, Ding J. Applications of Frequency Domain Decomposition and Deep Learning Algorithms in Short-term Load and Photovoltaic Power Forecasting[J]. Proceedings of the CSEE, 2019, 39(08):2221-2230+5(in Chinese). [Google Scholar]
  10. Jian X, Gu H, Wang Z. A short-term photovoltaic power prediction method based on dual-channel CNN and LSTM[J]. Electric Power Science and Engineering, 2019, 35(05):7-11. [Google Scholar]
  11. Atsushi Yona, Tomonobu Senjyu, Toshihisa Funabashi. Decision Technique of Solar Radiation Prediction Applying Recurrent Neural Network for Short-Term Ahead Power Output of Photovoltaic System[J]. Smart Grid and Renewable Energy, 2013, 04(6):32-38. [Google Scholar]
  12. James Bradbury, Stephen Merity, Caiming Xiong, and Richard Socher. 2017. Quasi-recurrent neural networks. In Proceedings of the International Conference on Learning Representations. [Google Scholar]
  13. Tao Lei, Yu Zhang, and Yoav Artzi. 2017. Training RNNs as Fast as CNNs. arXiv preprint arXiv:1709. 02755. [Google Scholar]
  14. Yu, Zeping, and Gongshen Liu. “Sliced Recurrent Neural Networks.” Proceedings of the 27th International Conference on Computational Linguistics. 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.