Open Access
Issue
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 02038
Number of page(s) 5
Section Energy Chemistry Performance and Material Structure Analysis
DOI https://doi.org/10.1051/e3sconf/202126102038
Published online 21 May 2021
  1. Chen, Q., Wang, H., Luan, Q. (2020) Synergetic effects of defects and acid sites of 2D-ZnO photocatalysts on the photocatalytic performance. J. Hazard Mater., 385: 121527. [CrossRef] [PubMed] [Google Scholar]
  2. Sa-Nguanprang, S., Phuruangrat, A., Thongtem, T. (2019) Visible-light-driven photocatalysis of Gddoped ZnO nanoparticles prepared by tartaric acid precipitation method. J. Russ. J. Inorg. Chem., 64: 1600-1608 [Google Scholar]
  3. Mardare, D., Mita, C., Cornei, N. (2016) Platinum role in hydrophilicity enhancement of Cr-doped TiO2 thin films. J. Philos. Mag., 28: 1-16. [Google Scholar]
  4. Liu, R., Zhao, D., Duan, L. (2020) Optical and photocatalytic properties of Zn1-xCdxO nanoparticles with tuned oxygen vacancy. J. Alloys. Compd., 825: 153377. [Google Scholar]
  5. Yuan, B., Zhang, B., Wang Z. (2017) Photocatalytic aerobic oxidation of toluene and its derivatives to aldehydes on Pd/Bi2WO6. J. Chinese J. Catal., 38: 440-446. [Google Scholar]
  6. Jaiswal, R., Bharambe, J., Patel, N. (2015) Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. J. Appl. Catal. B: Environ., 168-169: 333-341. [Google Scholar]
  7. Geng, Y., Chen, X., Yang, S. (2017) Promotional effects of Ti on a CeO2-MoO3 catalyst for the selective catalytic reduction of NOx with NH3. J. ACS Appl. Mater. Inter., 9: 16951-16958. [Google Scholar]
  8. Yasakau, K. A., Tedim, J., Zheludkevich, M. L. (2012) Cerium molybdate nanowires for active corrosion protection of aluminium alloys. J. Corros. Sci., 58: 41-51. [Google Scholar]
  9. Yang, Z., Qi, W., Su, R. (2017) 3D flower-like micro/nano Ce-Mo composite oxides as effective bifunctional catalysts for one-pot conversion of fructose to 2, 5-diformylfuran. J. ACS Sustain. Chem. Eng., 5: 4179-4187. [Google Scholar]
  10. Dargahi, M., Masteri-Farahani, M., Shahsavarifar, S. (2020) Microemulsion-mediated preparation of Ce2(MoO4)3 nanoparticles for photocatalytic degradation of crystal violet in aqueous solution Environ. J. Sci. Pollut. R., 27: 12047-12054. [Google Scholar]
  11. Wang, Z., Zhang, Y., Neyts, E.C. (2018) Catalyst preparation with plasmas: How does it work? J. ACS Catal., 8: 2093-2110. [Google Scholar]
  12. Snoeckx, R., Bogaerts, A. (2017) Plasma technology-a novel solution for CO2 conversion? J. Chem. Soc. Rev., 46: 5805-5863. [CrossRef] [PubMed] [Google Scholar]
  13. Rouwenhorst, K., Yannick, E., Veer, K. (2020) Plasma-driven catalysis: green ammonia synthesis with intermittent electricity. J. Green Chem., 22: 6258-6287. [Google Scholar]
  14. Mehta, P., Barboun, P. M., Engelmann, Y. (2020) Plasma-catalytic ammonia synthesis beyond the equilibrium limit. J. ACS Catal., 12: 6726-6734. [Google Scholar]
  15. Navascues P, Perez J M O, Cotrino J. (2020) Unraveling discharge and surface mechanisms in plasma-assisted ammonia reactions. J. ACS Sustain. Chem. Eng., 8: 14855-14866. [Google Scholar]
  16. Li, G., Wang, B., Liu, Y. (2008) Fabrication of superhydrophobic ZnO/Zn surface with nanowires and nanobelts structures using novel plasma assisted thermal vapor deposition. J. Appl. Surf. Sci., 255: 3112-3116. [Google Scholar]
  17. Liu, G., Li, Y., Chu, W. (2008) Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet. J. Catal. Commun., 9: 1087-1091. [Google Scholar]
  18. Tao, X., Yang, C., Huang. L. (2019) Novel plasma assisted preparation of ZnCuFeCr-layered double hydroxides with improved photocatalytic performance of methyl orange degradation. J. App. Surf. Sci., 507: 145053. [Google Scholar]
  19. Khaledian, H. R., Zolfaghari, P., Kheyrollahi, P., (2020) Surface modification of LaMnO3 perovskite supported on CeO2 using argon plasma for highperformance reduction of NO. J. Environ. Chem. Eng., 9: 104581. [Google Scholar]
  20. Ananth, A., Mok, Y. S. (2016) Dielectric barrier discharge (DBD) plasma assisted synthesis of Ag2O nanomaterials and Ag2O/RuO2 nanocomposites. J. Nanomaterials, 6: 42. [Google Scholar]
  21. Singh, G., Kushwaha, A., Sharma, M. (2020) Intriguing peroxidase-mimic for H2O2 and glucose sensing: a synergistic Ce2(MoO4)3/rGO nanocomposites. J. Alloys. Compd., 825: 154134. [Google Scholar]
  22. Kartsonakis, A., Kordas, G. (2010) Synthesis and characterization of cerium molybdate nanocontainers and their inhibitor complexes. J. Am. Ceram. Soc., 93: 65-73. [Google Scholar]
  23. Dong, M.Y., Lin, Q., Sun, H. M. (2011) Synthesis of cerium molybdate hierarchical architectures and their novel photocatalytic and adsorption performances. Cryst. J. Growth Des., 11: 5002-5009. [Google Scholar]
  24. X. Li, Y. Li. (2014) Selective catalytic reduction of NO with NH3 over Ce-Mo-Ox catalyst. J. Catal. Lett., 144: 165-171. [Google Scholar]
  25. Jiang, Y., Zhang, X., Lu, M. (2018) Activity and characterization of Ce-Mo-Ti mixed oxide catalysts prepared by a homogeneous precipitation method for selective catalytic reduction of NO with NH3. J. Taiwan Inst. Chem. E., 86: 133-140. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.