Open Access
E3S Web Conf.
Volume 261, 2021
2021 7th International Conference on Energy Materials and Environment Engineering (ICEMEE 2021)
Article Number 02059
Number of page(s) 9
Section Energy Chemistry Performance and Material Structure Analysis
Published online 21 May 2021
  1. Z.A. Huang, D.A. Jiang, Y. Yang, J.W. Sun, S.H. Jin. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants, Photosynthetica 42, 357-364 (2004) [CrossRef] [Google Scholar]
  2. S.M. Jeon, K.H. Ka. Nitrogen source-requirement and preference of ectomycorrhizal fungi in pure culture, The Korean J. Mycol 41, 149-159 (2013) [Google Scholar]
  3. U. Schlüter, M. Mascher, C. Colmsee, U. Scholz, A. Bräutigam, H. Fahnenstich, U. Sonnewald. Maize source leaf adaptation to nitrogen deficiency affects not only nitrogen and carbon metabolism but also control of phosphate homeostasis, Plant Physiol 160, 1384-1406 (2012) [CrossRef] [PubMed] [Google Scholar]
  4. S. Abel, C.A. Ticconi, C.A. Delatorre. Phosphate sensing in higher plants, Physiol. Plantarum 115, 1-8 (2002) [Google Scholar]
  5. A.E. Richardson, J.P. Lynch, P.R. Ryan, E. Delhaize, F.A. Smith, S.E. Smith, P.R. Harvey, M.H. Ryan, E.J. Veneklaas, H. Lambers. Plant and microbial strategies to improve the phosphorus efficiency of agriculture, Plant Soil 349, 121-156 (2011) [Google Scholar]
  6. C.P. Vance, C. Uhde-Stone, D.L. Allan. Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource, New Phytol 157, 423-447 (2010) 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites, Planta 227, 125-132 (2007) [Google Scholar]
  7. K. Kitayama, S.I. Aiba, M. Takyu, N. Majalap, R. Wagai. Soil phosphorus fractionation and phosphorus-use efficiency of a bornean tropical montane rain forest during soil aging with podozolization, Ecosystems 7, 259-274 (2004) [Google Scholar]
  8. T. Kiba, A.B. Feria-Bourrellier, F. Lafouge, L. Lezhneva, S. Boutet-Mercey, M. Orsel, V. Br�haut, A. Miller, F. Daniel-Vedele, H. Sakakibara. The Arabidopsis nitrate transporter NRT2. 4 plays a double role in roots and shoots of nitrogen-starved plants, Plant Cell 24, 245-258 (2012) [Google Scholar]
  9. D. Cordell, J.O. Drangert, S. White. The story of phosphorus: global food security and food for thought, Global Environ. Chang 19, 292-305 (2009) [Google Scholar]
  10. J. Shen, L. Yuan, J. Zhang, H. Li, Z. Bai, X. Chen, W. Zhang, F. Zhang. Phosphorus dynamics: from soil to plant, Plant Physiol 156, 997-1005 (2011) [CrossRef] [PubMed] [Google Scholar]
  11. M. Wissuwa. How do plants achieve tolerance to phosphorus deficiency? Small causes with big effects, Plant Physiol 133, 1947-1958 (2003) [CrossRef] [PubMed] [Google Scholar]
  12. M. Wissuwa, N. Ae. Genotypic variation for tolerance to phosphorus deficiency in rice and the potential for its exploitation in rice improvement, Plant Breeding 120, 43-48 (2001) [Google Scholar]
  13. K. Yoneyama, X. Xie, D. Kusumoto, H. Sekimoto, Y. Sugimoto, Y. Takeuchi, K. Yoneyama. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites, Planta 227, 125-132 (2007) [CrossRef] [PubMed] [Google Scholar]
  14. S. Sen, M.E. Smith, T. Setter. Effects of low nitrogen on chlorophyll content and dry matter accumulation in maiz, Afr. J. Agr. Res. 11, 1001-1007 (2016) [Google Scholar]
  15. Z. Liu, F. Gao, Y. Liu, J. Yang, X. Zhen, X. Li, Y. Li, J. Zhao, J. Li, B. Qian. Timing and splitting of nitrogen fertilizer supply to increase crop yield and efficiency of nitrogen utilization in a wheat-peanut relay intercropping system in China, Crop J 7, 101112 (2019) [Google Scholar]
  16. C. Grant, S. Bittman, M. Montreal, C. Plenchette, C. Morel. Soil and fertilizer phosphorus: Effects on plant P supply and mycorrhizal development, Can. J. Plant Sci 85, 3-14 (2005) [Google Scholar]
  17. Y. Maeda, M. Konishi, T. Kiba, Y. Sakuraba, N. Sawaki, T. Kurai, Y. Ueda, H. Sakakibara, S. Yanagisawa. A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis, Nat. Commun 9, 1376 (2018) [CrossRef] [PubMed] [Google Scholar]
  18. A. Medici, W. Szponarski, P. Dangeville, A. Safi, I.M. Dissanayake, C. Saenchai, A. Emanuel, V. Rubio, B. Lacombe, S. Ruffel. Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants, Plant Cell 31, 1171-1184 (2019) [CrossRef] [PubMed] [Google Scholar]
  19. W.Y. Lin, T.K. Huang, T.J. Chiou. Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis, Plant Cell 25, 4061-4074 (2013) [CrossRef] [PubMed] [Google Scholar]
  20. B. Hu, Z. Jiang, W. Wang, Y. Qiu, Z. Zhang, Y. Liu, A. Li, X. Gao, L. Liu, Y. Qian. Nitrate-NRT1.1BSPX4 cascade integrates nitrogen and phosphorus signalling networks in plants, Nat. Plants 5, 401 (2019) [Google Scholar]
  21. S. Kant, M. Peng, S.J. Rothstein. Genetic regulation by NLA and microRNA827 for maintaining nitratedependent phosphate homeostasis in Arabidopsis, PLoS Genet 7, e1002021 (2011) [CrossRef] [PubMed] [Google Scholar]
  22. C. Calderón-Vázquez, R.J. Sawers, L. Herrera Estrella. Phosphate deprivation in maize: genetics and genomics, Plant Physiol 156, 1067-1077 (2011) [CrossRef] [PubMed] [Google Scholar]
  23. Y. Sun, C. Mu, Y. Chen, X. Kong, Y. Xu, H. Zheng, H. Zhang, Q. Wang, Y. Xue, Z. Li. Comparative transcript profiling of maize inbreds in response to long-term phosphorus deficiency stress, Plant Physiol. Bioch 109, 467-481 (2016) [Google Scholar]
  24. Y. Sun, C. Mu, H. Zheng, S. Lu, H. Zhang, X. Zhang, X. Liu. Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na+ exclusion, Sci. Rep 8, 16203 (2018) [CrossRef] [PubMed] [Google Scholar]
  25. J. López-Bucio, A. Cruz-Ramırez, L. HerreraEstrella. The role of nutrient availability in regulating root architecture, Curr. Opin. Plant Biol 6, 280-287 (2003) [CrossRef] [PubMed] [Google Scholar]
  26. B.D. Gruber, R.F. Giehl, S. Friedel, N. von Wirén. Plasticity of the Arabidopsis root system under nutrient deficiencies, Plant Physiol 163, 161-179 (2013) [CrossRef] [PubMed] [Google Scholar]
  27. R. Shin, R.H. Berg, D.P. Schachtman. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency, Plant Cell Physiol 46, 1350-1357 (2005) [CrossRef] [PubMed] [Google Scholar]
  28. S. Osborne, J.S. Schepers, D. Francis, M.R. Schlemmer. Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements, Agron. J 94, 1215-1221 (2002) [Google Scholar]
  29. J.P. Lynch, K.M. Brown, Root strategies for phosphorus acquisition, in: The ecophysiology of plant-phosphorus interactions, Springer Netherlands, 2008, pp. 83-116. [Google Scholar]
  30. Y.F. Niu, R.S. Chai, G.L. Jin, H. Wang, C.X. Tang, Y.S. Zhang. Responses of root architecture development to low phosphorus availability: a review, Ann. Bot-LONDON 112, 391-408 (2012) [Google Scholar]
  31. H. Sun, J. Tao, S. Liu, S. Huang, S. Chen, X. Xie, K. Yoneyama, Y. Zhang, G. Xu. Strigolactones are involved in phosphate-and nitrate-deficiencyinduced root development and auxin transport in rice, J. Exp. Bot 65, 6735-6746 (2014) [CrossRef] [PubMed] [Google Scholar]
  32. C.T. Chen, C.L. Lee, D.M. Yeh. Effects of nitrogen, phosphorus, potassium, calcium, or magnesium deficiency on growth and photosynthesis of Eustoma, HortSci 53, 795-798 (2018) [Google Scholar]
  33. T. Araya, T. Kubo, N. von Wirén, H. Takahashi. Statistical modeling of nitrogen-dependent modulation of root system architecture in Arabidopsis thaliana, J. Integr. Plant Biol. 58, 254-265 (2016) [CrossRef] [PubMed] [Google Scholar]
  34. M.A. Begum, M.A. Islam, Q.M. Ahmed, M.A. Islam, M.M. Rahman. Effect of nitrogen and phosphorus on the growth and yield performance of soybean, Agroaid Found 2, 35 (2015) [Google Scholar]
  35. H.A. Eltelib, M.A. Hamad, E.E. Ali. The effect of nitrogen and phosphorus fertilization on growth, yield and quality of forage maize (Zea mays L.), J. Agron 5, 515-518 (2006) [Google Scholar]
  36. L.C. Carvalhais, P.G. Dennis, D. Fedoseyenko, M.R. Hajirezaei, R. Borriss, N. von Wirén. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency, J. Plant Nutr. Soil Sci 174, 3-11 (2011) [Google Scholar]
  37. P.M. Vitousek, S. Porder, B.Z. Houlton, O.A. Chadwick. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions, Ecol. Appl 20, 5-15 (2010) [CrossRef] [PubMed] [Google Scholar]
  38. L. Xin, H.Y. Hu, G. Ke, Y.X. Sun. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp, Bioresource Technol 101, 5494-5500 (2010) [Google Scholar]
  39. A. Medici, A. Marshall-Colon, E. Ronzier, W. Szponarski, R. Wang, A. Gojon, N.M. Crawford, S. Ruffel, G.M. Coruzzi, G. Krouk. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip, Nat. Commun 6, 6274 (2015) [CrossRef] [PubMed] [Google Scholar]
  40. Y.N. Cui, X.T. Li, J.Z. Yuan, F.Z. Wang, S.M. Wang, Q. Ma. Nitrate transporter NPF7. 3/NRT1. 5 plays an essential role in regulating phosphate deficiency responses in Arabidopsis, Biochem. Bioph. Res. Co 508, 314-319 (2019) [Google Scholar]
  41. F.X. Xu, H. Xiong, L. Zhang, X.Y. Guo, Y.C. Zhu, X.B. Zhou, M. Liu. Effect of nitrogen application on accumulation and distribution of nitrogen, phosphorus, potassium and dry matter of mid-season hybrid rice in winter paddy field, J. Agr. Sci. Tech 14, 118-126 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.