Open Access
Issue
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
Article Number 02010
Number of page(s) 7
Section Reliability of Buildings and Constructions and Safety in Construction
DOI https://doi.org/10.1051/e3sconf/202126302010
Published online 28 May 2021
  1. Kulik L.V., Kravchenko E.V., Klejmyonova E. P. Academic Focus for Postgraduates. M.:, 56, (2021) [Google Scholar]
  2. I. Marshev History of Management Thought. M.: Springer, (2021) [Google Scholar]
  3. Bell D. The Coming of Post-Industrial Society. A Venture in Social Fore casting. Harmondsworth: Penguin Books, 507, (1973) [Google Scholar]
  4. Michael J. Shaw E-Commerce and the Digital Economy. M.: Routledge, 304, (2006) [Google Scholar]
  5. Davletkaliev R. What is Big Data, Part 2, https://habrahabr.ru/post/308586/. [Google Scholar]
  6. Ponyavina N.A. Povyshenie organizacionno-tekhnologicheskoj nadezhnosti remontno- vosstanovitel’nyh i rekonstrukcionnyh rabot na ob”ektah nedvizhimosti: dissertaciya ... kandidata tekhnicheskih nauk: 05.02.22 / Ponyavina Nataliya Aleksandrovna; [Mesto zashchity: Voronezh. gos. arhitektur.-stroit. un-t]. Voronezh, 140, (2010) [Google Scholar]
  7. Ginzburg A.V. Organizacionno - tekhnologicheskaya nadezhnost’ stroitel’nyh sistem / A.V. Ginzburg // Vestnik MGSU, 251-255, (2010) [Google Scholar]
  8. Andreas, Myuller Vvedenie v mashinnoe obuchenie s pomoshch’yu Python. Rukovodstvo dlya specialistov po rabote s dannymi / Myuller Andreas. - M.: Al’fa- kniga, 487?, (2017) [Google Scholar]
  9. Das S. R. Big Data’s Big Muscle // Finance & Development, 3, 26-27, (2016) [Google Scholar]
  10. Nezhnikova E.V. Problems of Reproduction of Environmentally Friendly Housing. Economics of Construction, 3 (45), 4-12 (2017) [Google Scholar]
  11. Gurskaya E.D., Dotsenko M.A., Sokolyansky V.V. Big Data Technologies in the Service: New Markets, Opportunities and Problems. Issues in Economic Sciences, 4(74), 42–44 (2015) [Google Scholar]
  12. T. Jordan Big Data in Practice: How 45 Successful Companies Used Big Data Analytics to Deliver Extraordinary Results. M.: Wiley, 320, (2016) [Google Scholar]
  13. Maltseva S.V., Lazarev V.V. Marketing analytics in the field of electronic business on the basis of large data. Information technologies in design and production, 62-67, (2015) [Google Scholar]
  14. Ivanova M.A., Ginzburg A.V. Vzaimosvyaz’ kachestva organizacii maloetazhnogo stroitel’stva i organizacionno-tekhnologicheskoj nadezhnosti stroitel'nogo proizvodstva // Nauka i biznes: puti razvitiya, 9(87), 33-37, (2018) [Google Scholar]
  15. Domingos, P. Verhovnyj algoritm. Kak mashinnoe obuchenie izmenit nash mir / P. Domingos. - M.: Mann, Ivanov i Ferber, 656, (2016) [Google Scholar]
  16. Ivanov N.A., Gnevanov M.V. Ocenka sostoyaniya zdanij pered remontnymi rabotami na osnove primeneniya tekhnologij mashinnogo obucheniya // Perspektivy nauki, 4(94), 46-48, (2019) [Google Scholar]
  17. Torgo L., Ribeiro R.P., Pfahringer B., Branco P. SMOTE for Regression. Progress in Artificial Intelligence, EPIA, 378-389, (2013) [Google Scholar]
  18. Das S. R. Big Data’s Big Muscle. Finance & Development, 3(26–270), (2016) [Google Scholar]
  19. Kitchin, R. The Data Revolution: Big Data, Open Data, Data Infrastructures and Their Consequences. Sage, 722-723 (2014) [Google Scholar]
  20. Ivanov N.A., Gnevanov M.V. Big Data: Perspectives of Using in Urban Planning and Management // MATEC Web of Conferences, 170, (2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.