Open Access
Issue
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
Article Number 02009
Number of page(s) 14
Section Reliability of Buildings and Constructions and Safety in Construction
DOI https://doi.org/10.1051/e3sconf/202126302009
Published online 28 May 2021
  1. E. V. Gvozdev, & Y. G. Matvienko. Comprehensive Risk Assessment at the Life Support Enterprises with Hazardous Production Facilities. Occup. Saf. Ind. 2019, 69–78 (2019). DOI: 10.24000/0409-2961-2019-10-69-78 [Google Scholar]
  2. Evgeny Gvozdev. On the probability determination of the reliability of a technosphere object under hazardous influence. IOP Conf. Ser. Mater. Sci. Eng. 869 05204 (2020) doi:doi:10.1088/1757-899X/869/5/052043 [Google Scholar]
  3. E. V. Gvozdev. Methodology for the synthesis of an adaptive integrated security system at a regional life support enterprise. Pozharovzryvobezopasnost/Fire Explos. Saf. (2020) doi:10.18322/PVB.2020.29.02.6-16 [Google Scholar]
  4. N. A. Makhutov, (2017). Generalized regularities of deformation and fracture processes. Herald of the Russian Academy of Sciences, 87(3), 217–228. https://doi.org/10.1134/S1019331617030030 [Google Scholar]
  5. N. A. Mahutov, V. I. Ivanov, V. V. Musatov. Application of technical diagnostics for calculating the probability of destruction of technical devices and assessing the risk of an accident// Occupational safety in industry. – (2018). - № 9. - P. 53-64. DOI: 10.24000/0409-2961-2018-9-53-64 [Google Scholar]
  6. G. E. Vladimirovich, & C. V. Mikhailovna, The Modern Strategy to the Process of Managing Complex Security of the Enterprise on the Basis of Rational Centralization. Int. J. Innov. Technol. Explor. Eng. 9, 4614–4620 (2019) doi 10.35940/ijitee.A4944.119119 [Google Scholar]
  7. N. A. Makhutov, et al. The impact of damaging factors of man-made emergencies on environmental safety. Safety and emergency issues 53-66 (2019) doi:10.36535/0869-4176-2019-06-7 [Google Scholar]
  8. A. Noroozi, , N. Khakzad, , F. Khan, , S. Mackinnon & R. Abbassi, (2013). The role of human error in risk analysis: Application to pre- and post-maintenance procedures of process facilities. Reliability Engineering and System Safety, 119, 251–258. https://doi.org/10.1016/j.ress.2013.06.038 [Google Scholar]
  9. B. Kamsu-Foguem, (2016). Information structuring and risk-based inspection for the marine oil pipelines. Applied Ocean Research, 56, 132–142. https://doi.org/10.1016/j.apor.2016.01.009 [Google Scholar]
  10. O. A. Tsygankova, , D. M. Atabaeva, A. A. Shavaev, R. A. Girs & A. A. Chetvertakov. Method of Non-Destructive Testing of Composite Materials. in Proceedings of the 2019 IEEE International Conference Quality Management, Transport and Information Security, Information Technologies IT and QM and IS 2019 (2019). doi:10.1109/ITQMIS.2019.8928409 [Google Scholar]
  11. E. C. Bentz, F. J. Vecchio & M. P. Collins. Simplified modified compression field theory for calculating shear strength of reinforced concrete elements. ACI Struct. J. (2006) doi:10.14359/16438 [Google Scholar]
  12. N. Z. Muhammad et al. Tests and methods of evaluating the self-healing efficiency of concrete: A review. Construction and Building Materials (2016) doi:10.1016/j.conbuildmat.2016.03.017 [Google Scholar]
  13. J. Cai, G. Bu, C. Yang, Q. Chen & Z. Zuo. Calculation methods for inter-story drifts of building structures. Adv. Struct. Eng. (2014) doi:10.1260/1369-4332.17.5.735 [Google Scholar]
  14. D. Minoli, K. Sohraby & B. Occhiogrosso. Considerations, Requirements, and Architectures for Smart Buildings-Energy Optimization and Next-Generation Building Management Systems. IEEE Internet Things J. (2017) doi:10.1109/JIOT.2017.2647881 [PubMed] [Google Scholar]
  15. E. Yu. Kolesnikov, E. Telyakov. Quantitative assessment of emergency risk: estimation of parametric sensitivity of models and conservativeness of accepted assumptions// Occupational safety in industry. (2018) № 3. P. 63-67. DOI: 10.24000/0409-2961-2018-3-63-67 [Google Scholar]
  16. E. Yu. Kolesnikov. On the uncertainty of the value of the concentration limits of the flame propagation of combustible gas-steam-air mixtures// Occupational safety in industry. (2020) № 6. P. 89-94. DOI: 10.24000/0409-2961-2020-6-89-94 [Google Scholar]
  17. GESKON. FLACS software (2020). Website https://www.gexcon.com/products-services/FLACS-Software/22/en. Date of appeal 07.16.2020 [Google Scholar]
  18. PyroSim. Field model of fire (2020), https://pyrosim.ru/polevaya-model-pozhara. Date of appeal 07.16.2020 [Google Scholar]
  19. FDS-SMV. Simulator of the dynamics of fire and smoke (2020), https://pages.nist.gov/fds-smv/. Date of appeal 07.16.2020 [Google Scholar]
  20. Recommendations for assessing the reliability of building structures of buildings and structures by external signs. “TsNIIpromzdaniy”. (2001), Moscow, in Russian [Google Scholar]
  21. A. S. Pecherkin (2017). Research Prospects in the Field of Risk Analysis for Improvement of Government Regulation and Safety Increase of the Oil and Gas Chemical Complex Objects. Occupational Safety in Industry, (9), 5–13. https://doi.org/10.24000/0409-2961-2017-9-5-13 [Google Scholar]
  22. V. V. Klyuev et al. 20TH NATIONAL CONFERENCE ON NON-DESTRUCTIVE TESTING AND TECHNICAL DIAGNOSTICS. Kontrol’. Diagnostika. (2014) doi:10.14489/td.2014.05.pp.005-016 [Google Scholar]
  23. E.Yu. Kolesnikov, E. Telyakov. Quantitative assessment of emergency risk: an assessment of the parametric sensitivity of models and the conservatism of the assumptions made. Labor safety in industry. (2018). 3. Pp. 63-67. DOI: 10.24000 / 0409-2961-2018-3-63-67 [Google Scholar]
  24. L. Gandossi, K. Simola & B. Shepherd. The link between risk-informed in-service inspection and inspection qualification. Insight Non-Destructive Test. Cond. Monit. (2009) doi:10.1784/insi.2009.51.1.16 [Google Scholar]
  25. V.K. Kodur, A. Agrawal. An approach for evaluating residual capacity of reinforced concrete beams exposed to fire Eng. Struct. (2016) 110. Pp. 293-306 https://doi.org/10.1016/j.engstruct.2015.11.047 [Google Scholar]
  26. Y. Wang, et al. Analytical model for predicting the load–deflection curve of post-fire reinforced-concrete slab. Fire Saf. J. (2018) 101. Pp. 63-83. https://doi.org/10.1016/j.firesaf.2018.09.002 [Google Scholar]
  27. Fedorova N. V., Vu Ngok Tuen, Yakovenko I. A. Criterion of strength of a flat- stressed reinforced concrete element under special impact. Vestnik MGSU. (2020). Vol. 15. Issue 11. pp. 1513-1522. DOI: 10.22227/1997-0935.2020.11.1513-1522 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.