Open Access
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
Article Number 02051
Number of page(s) 6
Section Reliability of Buildings and Constructions and Safety in Construction
Published online 28 May 2021
  1. Z.G. Ter-Martirosyan. Rheological parameters of soils and calculations of the foundations of structures. M.: Strojizdat. p.200 (1990) [Google Scholar]
  2. T.SH. SHirinkulov, YU.K. Zareckij. Creep and soil consolidation. Tashkent.: Fan. p.392 (1986) [Google Scholar]
  3. YU.K. Zareckij. Viscoplasticity of soils and calculations of structures. M.: Strojizdat. p.352 (1988) [Google Scholar]
  4. S.R. Meschyan. Rheological processes in clayey soils, taking into account special influences. Er.: Ajastan. p.395 (1992) [Google Scholar]
  5. S.R. Meschyan. Experimental rheology of clay soils. Er.: Gitutyun. p.498 (2005) [Google Scholar]
  6. K. Tercagi. Soil mechanics theory. M.: Gosstrojizdat. p.507 (1961) [Google Scholar]
  7. S.S. Vyalov. Rheological foundations of soil mechanics: textbook manual for construction universities. M.: Vysshaya shkola. p.447 (1978) [Google Scholar]
  8. M.N. Goldshtejn. Mechanical properties of soils. M.: Strojizdat. p.256 (1977) [Google Scholar]
  9. N.N. Maslov. Fundamentals of Engineering Geology and Soil Mechanics. M.: Vysshaya shkola. p.511 (1982) [Google Scholar]
  10. G.I. Ter-Stepanyan. The phenomenon of jump-like rearrangement of soil structure during deformation. Engineering Geology 3, 11–26 (1988) [Google Scholar]
  11. G.I. Ter-Stepanyan. Investigation of the creep of clay soils during shear. In the book: Proceedings of the XIII International Conf. on soil mechanics and foundation engineering (1972) [Google Scholar]
  12. K. Bolej, L.A. Strokova. Determination of the creep characteristics of clay soils. Bulletin of the Tomsk Polytechnic University 2, 42–44 (2007) [Google Scholar]
  13. M. Tafili, T.A. Triantafyllidis. simple hypoplastic model with loading surface accounting for viscous and fabric effects of clays. International Journal for Numerical and Analytical Methods in Geomechanics 44(16) 2189–2215 (2020) [Google Scholar]
  14. P. Ren, P. Wang, H. Zhang and Y. Tang. Nonlinear behavior of clay creep and its fractional derivative creep model. Gongcheng Lixue/Engineering Mechanics 37(9) 153-160, 207 (2020) [Google Scholar]
  15. Z-Y. Zhu, F. Luo, Y-Z. Zhang, D-J. Zhang and J-L. He. A creep model for frozen sand of Qinghai-Tibet based on Nishihara model. Cold Regions Science and Technology 167(102843) (2019) [Google Scholar]
  16. X. Ning, H. Xiao, C. Zhang, B. He and J. Xie. Study on the nonlinear creep model of expansive soil. Journal of Natural Disasters 26(1) 149–155 (2017) [Google Scholar]
  17. E. Haghighat, FS. Rassouli, M.D. Zoback and R. Juanes. A viscoplastic model of creep in shale Geophysics 85(3) MR155-MR166 (2020) [Google Scholar]
  18. R.G. Gu, Y. Zou, Y.G. Fang and Y.G. Hu. Rheological model of soft soils using nonlinear instantaneous elastic modulus. Yantu Lixue/Rock and Soil Mechanics 39(1) 237–241 (2018) [Google Scholar]
  19. A.Z.Ter-Martirosyan. The interaction of the foundations of buildings and structures with a water-saturated base when taking into account the nonlinear and rheological properties of soils: Dissertation of the doctor of technical sciences: 05.23.02 (Moscow: NRU MGSU) 324 p (2016) [Google Scholar]
  20. ASTM D6528 2007 Standard test method for consolidated undrained direct simple shear testing of cohesive soils (USA: ASTM International). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.