Open Access
Issue
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
Article Number 03004
Number of page(s) 8
Section Modelling and Mechanics of Building Structures
DOI https://doi.org/10.1051/e3sconf/202126303004
Published online 28 May 2021
  1. G. Allaire. Homogenization and two-scale convergence. SIAM J. on Mathematical Analysis, 23(6):1482–1518 (1992) [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Bardi and E. Feleqi. Nonlinear elliptic systems and mean-field games. Nonlinear Differential Equations Appl., 23(4):Art. 44 (2016) [Google Scholar]
  3. L. Bufford and I. Fonseca. A note on two scale compactness. Port. Math., 72(2-3):101–117 (2015) [Google Scholar]
  4. L. Carbone and R. D. Arcangelis. Unbounded functionals in the calculus of variations. Vol. 125. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC,Boca Raton, FL, Representation, relaxation, and homogenization (2002) [Google Scholar]
  5. P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta. Long time average of mean field games. Netw. Heterog. Media, 7(2):279–301 (2012) [Google Scholar]
  6. P. Cardaliaguet, J-M. Lasry, P-L. Lions, and A. Porretta. Long time average of mean field games with anonlocal coupling. SIAM J. on Control and Optimization, 51(5):3558–3591 (2013) [Google Scholar]
  7. J. Aboudi, M.-J. Pindera, and S. Arnold. Linear thermoelastic higher-order theory for periodic multiphase materials. J. of Applied Mech., 68(5):697–707 (2001) [Google Scholar]
  8. A. Bensoussan, J.-L. Lions, and G. Papanicolaou. Asymptotic analysis for periodic structures. North-Holland, Amsterdam (1978) [Google Scholar]
  9. D. Addessi, M. L. De Bellis, and E. Sacco. Micromechanical analysis of heterogeneous materials subjected to overallcosserat strains. Mechanics Research Communications, 54:27–34 (2013) [Google Scholar]
  10. G. Allaire. Homogenization and two-scale convergence. SIAM Journal of Mathematical Analisys, 23:1482–1518 (1992) [Google Scholar]
  11. S. Kuznetsov. SH-waves in laminated plates. Quart. Appl. Math. 64: 153–165, (2006) [CrossRef] [Google Scholar]
  12. S. Kuznetsov. Love waves in stratified monoclinic media. Quart. Appl. Math. 62: 749–766 (2004) [CrossRef] [Google Scholar]
  13. A. Ilyashenko et al. SH waves in anisotropic (monoclinic) media. Z. Angew. Math. Phys. 69(17) (2018) [CrossRef] [Google Scholar]
  14. R.V. Goldstein et al. Long-Wave Asymptotics of Lamb Waves. Mech. Solids 52: 700–707 (2017) [CrossRef] [Google Scholar]
  15. S. Kuznetsov, A. Karakozova. Stress and displacement intensity factors of cracks in anisotropic media. Int. J. of Applied Mechanics and Engineering, vol.25, No.3, 212–218 (2020) [CrossRef] [Google Scholar]
  16. S. Kuznetsov. Abnormal dispersion of Lamb waves in stratified media. Z. Angew. Math. Phys. 70(175) (2019) [Google Scholar]
  17. I. V. Saveliev. Course of general physics. Volume I: mechanics, oscillations and waves, molecular physics Moscow (1970) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.