Open Access
Issue
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
Article Number 03019
Number of page(s) 7
Section Modelling and Mechanics of Building Structures
DOI https://doi.org/10.1051/e3sconf/202126303019
Published online 28 May 2021
  1. A.P. Chugainova // Nonstationary solutions of the generalized Korteweg – de Fries – Burgers equation //// Proceedings of the Steklov Institute of Mathematics, 2013, 281, 204–212 DOI: https://doi.org/10.1134/S0371968513020179 [Google Scholar]
  2. Feng Yuqiang // Existence and uniqueness results for a third-order implicit differential equation, Computers and Mathematics with Applications 56 (2008) 2507–2514 [Google Scholar]
  3. Orlov V. N., Gasanov M. V. //Study of wave processes in elastic beams and nonlinear differential equations with moving singular points// IOP Conference Series: Materials Science and Engineering 2020, doi:10.1088/1757-899X/1030/1/012081 [Google Scholar]
  4. Orlov V. N., Gasanov M. V // Existence theorem for a solution of one class of nonlinear differential equations of the third order with a polynomial right-hand side of the seventh degree in a neighborhood of a moving singular point// Vestnik ChGPU im. I. Ya. Yakovleva Series: Limit State Mechanics 2020. № 1 (43). С. 92–99 DOI: 10.37972/chgpu.2020.43.1.011 18. [Google Scholar]
  5. Aleroev T. S., Gasanov M. V // Perturbation of a moving singular point and an analytical approximate solution for a class of nonlinear third-order differential equations // Vestnik ChGPU im. I. Ya. Yakovleva Series: Limit State Mechanics. 2021. № 1 (47). С. 16–27. [Google Scholar]
  6. Orlov V. N. // Method of approximate solution of the first, second differential equations of Painlevé and Abel. М.: MPGU, 2013. 174 с. [Google Scholar]
  7. Orlov V. N. // Investigation of the approximate solution of the Abel differential equation in the vicinity of a moving singular point. // Vestnik MGTU im. N.E.Bauman. Series: Natural Sciences.2009. № 4 (35). С. 23–32. [Google Scholar]
  8. Orlov V. N., Leontyeva T.Yu.// On the expansion of the domain for the analytical approximate solution of one class of nonlinear differential equations of the second order in the complex domain.// Vestnik Samarskogo Gos. tech. university. Ser. Phys.- mat. science, 2020. Т 2 doi:10.14498/vsgtu1727 [Google Scholar]
  9. Orlov V. N., Yves B.B. // Existence theorem for a solution of one class of nonlinear differential equations of the fourth order with polynomial right-hand side of the second degree in the vicinity of a moving singular point// Bulletin of the Bashkir University..2018. Т. 23, №4. С. 980–986. [Google Scholar]
  10. Orlov V. N., Zheglova Y.G. // Mathematical modeling of building structures and nonlinear differential equations // International Journal of Modeling, Simulation, and Scientific Computing. Vol. 11, No. 3 (2020) 2050026 (7 pages) World Scientific Publishing Company doi: 10.1142/S1793962320500269 [Google Scholar]
  11. Orlov V. N., Kovalchuk O.A. // Research of one class of nonlinear differential equations of third order for mathematical modelling the complex structures // IOP Conference Series: Materials Science and Engineering, 365, 2018. doi:10.1088/1757-899X/365/4/042045 [Google Scholar]
  12. Orlov V. N., Kovalchuk O.A., Linnik E.P., Linnik I.I. // Research into a Class of Third-Order Nonlinear Differential Equations in the Domain of Analyticity// Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2018, no. 4, pp. 24–35 (in Russ.). doi: 10.18698/1812-3368-2018-4-24-35 [Google Scholar]
  13. Orlov V. N., Kovalchuk O.A. // Mathematical modeling of complex structures and nonlinear differential equations with movable points // IOP Conf. Series: Materials Science and Engineering 456 (2018) 012122 IOP Publishing. doi:10.1088/1757-899X/456/1/012122 [Google Scholar]
  14. Orlov V. N., Kovalchuk O.A. // Mathematical problems of reliability assurance the building constructions// E3S Web Conf.Volume 97, 03031, 2019. XXII International Scientific Conference ―Construction the Formation of Living Environment‖ (FORM-2019). doi: https://doi.org/10.1051/e3sconf/20199703031 [Google Scholar]
  15. Orlov V. N., Kovalchuk O.A. // An analytical solution with a given accuracy for a nonlinear mathematical model of a console-type construction (Scopus)// 18 Modelling and Methods of Structural Analysis IOP Conf. Series: Journal of Physics: Conf. Series 1425 (2020) 012127 IOP Publishing. doi:10.1088/1742-6596/1425/1/012127 [Google Scholar]
  16. Orlov V.N., Chichurin A. // On the theory of constructing a numerical-analytical solution of a cantilever beam bend nonlinear differential equation of the first order (Scopus)// Modelling and Methods of Structural Analysis IOP Conf. Series: Journal of Physics: Conf. Series 1425 (2020) 012129 IOP Publishing. doi:10.1088/1742-6596/1425/1/012129 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.