Open Access
Issue
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
Article Number 04005
Number of page(s) 9
Section Engineering and Smart Systems in Construction
DOI https://doi.org/10.1051/e3sconf/202126304005
Published online 28 May 2021
  1. Computer vision: technologies, market, perspectives. TADVISER. Government.Bisiness.IT. 2019. №6-26. https:// www.tadviser.com [Google Scholar]
  2. Lukyanica A.A, A.G. Shishkin. A.G. Digital video processing. M.:, “AY-ES-ES-PRESS”. - 2009. 518 p. [Google Scholar]
  3. Lihtcinder B.J., Kirychek R.V., Fedotov E.D. and oth. Wireless Sensor Networks. M.: “Hot Line-Telcom”.2020.236p. [Google Scholar]
  4. Tandel R.I. Learh Protocol in Wireless Server Network. A Survay // International Jurnal of Computer Science and Information Technologies. 2016. Vol. 7(4). P. 1894-1896 [Google Scholar]
  5. Powlak R., Vojceichowski R., Nicodem M/ New Simplified HEED Algorithm for Wireless Sensors Network // Computer networks, 17th conference, CN 2010, Ustron, Poland, June 15-19, 2010 [Google Scholar]
  6. Maximov K.V. The effectiveness of the use of cloud computing: methods and models of evaluation //Applied computer science, 2016. № 1(81), p.106–113. [Google Scholar]
  7. Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo Higashino. Edge-centric Computing: Vision and Challenges // ACM SIGCOMM Computer Communication Review. 2015. Vol. 45. iss. 5. pp. 37–42. [Google Scholar]
  8. Peripheral calculations (Edge computing). TADVISER. Government.Bisiness.IT. 2019. №11–7. https:// www.tadviser.com [Google Scholar]
  9. Olivier Hersent, David Boswarthick, Omar Elloumi. The Internet of Things: Key Applications and Protocols. — Willey, 2012. — 370 p [Google Scholar]
  10. L. Chernyak. IoT platform. Open systems. DBMS, 2012. № 7. [Google Scholar]
  11. Alexandr Konikov, Ekaterina Kulikova and Olga Stifeeva. Research of the possibilities of application of the Data Warehouse in the construction area. MATEC Web of Conferences 251, 03062 (2018) [CrossRef] [EDP Sciences] [Google Scholar]
  12. Konikov A., Konikov G. Big Data is a powerful tool for improving the environment in the construction business. IOP Conference Series: Earth and Environmental Science, 2017, vol. 90, p. 012184. [Google Scholar]
  13. Konikov A.I. Promising areas in the field of information systems for construction management // Industrial and Civil Engineering, 2019, №6, p. 64–69 [Google Scholar]
  14. A.I. Konikov. Study of a number of aspects of using Big Data technology in constructionе, BST Journal, 2019, №2, p. 28–29. [Google Scholar]
  15. Nikolay Ivanov and Maxim Gnevanov. Big data: perspectives of using in urban planning and management. MAT EC Web of Conferences 170, 01107 (2018) [Google Scholar]
  16. Kurt Stockinger, Nils Bundi, Jonas Heitz and Wolfgang Breymann. Scalable architecture for Big Data financial analytics: user-defined functions vs. SQL. Journal of Big Data. March 2019. DOI10.1186/s40537-019-0209-0 [PubMed] [Google Scholar]
  17. Gnevanov М. V., Ivanov N. A. Big Data technology - using in urban planning // Industrial and Civil Engineering, 2018. № 4. p. 83–87. [Google Scholar]
  18. Valpeters M., Kireev I., Ivanov N., 2018. Application of machine learning methods in big data analytics at management of contracts in the construction industry. MATEC Web of Conferences, 170, 01106 [CrossRef] [EDP Sciences] [Google Scholar]
  19. Konikov A. Promising wireless applications in the construction industry. E3S Web of Conferences 164, 10043 (2020) TPACEE-2019 [EDP Sciences] [Google Scholar]
  20. Evstratov V. Some aspects of intelligent decision support systems in construction // IOP Conference Series: Materials Science and Engineering Volume 1030, Issue 1, 14 January 2021, 012066 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.