Open Access
Issue |
E3S Web Conf.
Volume 263, 2021
XXIV International Scientific Conference “Construction the Formation of Living Environment” (FORM-2021)
|
|
---|---|---|
Article Number | 05034 | |
Number of page(s) | 7 | |
Section | Global Environmental Challenges | |
DOI | https://doi.org/10.1051/e3sconf/202126305034 | |
Published online | 28 May 2021 |
- D. Khalaf Hamid, Spatial Analysis to Estimate Runoff Using SCS(CN) to Wadi Almur North of Iraq, Tikrit Journal of Pure Sciences, 21(5), 110-121, (2016). [Google Scholar]
- B. Zhang and R. S. Govindaraju, Geomorphology-based artificial neural networks (GANNs) for estimation of direct runoff over watersheds, Journal of Hydrology, 273, 18–34, (2003). [CrossRef] [Google Scholar]
- M. R. Yazdani, B. Saghafian, M. H. Mahdian, and S. Soltani, Monthly Runoff Estimation Using Artificial Neural Networks, J. Agric. Sci. Technol., 11, 355–362, (2009). [Google Scholar]
- P. Jimeno-s, J. Senent-aparicio, and D. Pulido-velazquez, A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain, Water 2018, doi: 10.3390/w10020192, (2018). [Google Scholar]
- S. Srinivasulu and A. Jain, A comparative analysis of training methods for artificial neural network rainfall – runoff models, Applied Soft Computing, 6, 295–306, doi: 10.1016/j.asoc.2005.02.002, (2006). [CrossRef] [Google Scholar]
- K. Solaimani, Rainfall-runoff Prediction Based on Artificial Neural Network ( A Case Study : Jarahi Watershed ), American-Eurasian J. Agric. & Environ. Sci., 5, 6, 856–865, (2009). [Google Scholar]
- S. M. Chen, Y. M. Wang, and I. Tsou, Using artificial neural network approach for modelling rainfall – runoff due to typhoon, J. Earth Syst. Sci., 2, 399–405, (2013). [CrossRef] [Google Scholar]
- A. Chakravarti, N. Joshi, and H. Panjiar, Rainfall Runoff Analysis Using Artificial Neural Network, Indian Journal of Science and Technology, 8(14), doi: 10.17485/ijst/2015/v8i14/54370, (2019). [Google Scholar]
- M. Issa, The relationship between river flow and precipitation in the Orontes Basin, Damascus University Journal, 31(2), (2015). [Google Scholar]
- Y. Hamdan, E. Layos and I. Mohammed, Identify indicators of climate change through the analysis of the amount of rain on upper basin for Orontes River, Al-Baath University Journal, 39(43), (2017). [Google Scholar]
- N. Ghahreman and M. Sameti, Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-arid Climates, DESERT, 1, 75–81, (2014). [Google Scholar]
- M. Kumar, N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt, Estimating Evapotranspiration using Artificial Neural Network, J. Irrig. Drain Eng., 128, 224–233, (2002). [CrossRef] [Google Scholar]
- T. Razavi and K. Province, Estimating of Reference Evapotranspiration by Using Artificial Neural Networks, International Conference on Transport, Environment and Civil Engineering (ICTECE'2012) August, Kuala Lumpur (Malaysia), 80–84, (2012). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.