Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 01011
Number of page(s) 12
Section Ecology, Hydropower Engineering and Modeling of Physical Processes
DOI https://doi.org/10.1051/e3sconf/202126401011
Published online 02 June 2021
  1. Novojilov V. V., Tonkix obolochek doctrina. (1, Sudpromizdat) p 431. (1962). [Google Scholar]
  2. Volmir A. S., Nelineynaya viribuspropriis laminas bellicorum bombos imitantur (M. Nauka) p CDXXXII. (1972). [Google Scholar]
  3. Rjanitsyn R.A., Stroitelnaya mechanicis tractatur (M: Vysshaya shkola) CD. (1982). [Google Scholar]
  4. Sheremeteva A. K. and Chexonin K. A. Deformationis polymeric analysis de compositum de proprietatibus et conditionibus tempus fluminum liberam et animi remis Acta Congressus Internationalis materiäli XXI Latini Opera Application Systems (VMSPPS’2019), 24–31 Maii MMXIX, Alushta M Vo-Izd MAI pp 365-367, (2019). [Google Scholar]
  5. Mirsaidov M. M., Safarov I. I. and Teshaev M. Kh., Dynamics Structurally inhomogeneous lamellae intertexta, et ex Mechanica Crusta Systems Aequationes Mathematicae parte 1 Journal et I. 7 (10), October XIV, MMXIX. [Google Scholar]
  6. Teshaev M.K., Safarov I.I., Kuldashov N.U., Ishmamatov M.R. and Ruziev T.R., On the Distribution of Free Waves on the Surface of a Viscoelastic Cylindrical, Cavity Journal of Vibrational Engineering and Technologies 8 (4) pp 579–585. [Google Scholar]
  7. Makowski J., Pietraszkiewicz W. and Stumpf H., On the general form of jump conditions for thin irregular shells Arch. Mech. 50 (3), pp. 483–495, (1998). [Google Scholar]
  8. Mirsaidov M. M., Safarov I. I. and Teshaev M. Kh., Dynamics of Structural-Inhomogeneous Laminate and Shell Mechanical Systems with Point Constraints and Focused Masses Part 2 Statement of the Problem of Forced Oscillations, Methods of Solution, Computational Algorithm and Numerical Results Journal of Applied Mathematics and Physics. 7 (11). November 5. (2019). [Google Scholar]
  9. Safarov I. I., Teshaev M. Kh. and Boltaev Z. I., Own Vibrations of Bodies Interacting with Unlimited Deformable Environment, Open Access Library Journal 5, pp. 1–22, (2018). [Google Scholar]
  10. Safarov I. I., Teshaev M. Kh. and Akhmedov M. S., Free Oscillations of a Toroidal Viscoelastic Shell with a Flowing Liquid, American Journal of Mechanics and Applications 6 (2), pp. 37–49, (2018). [Google Scholar]
  11. Abovskiy N. P., Rebristye obolochki (Krasnoyarsk) p 61. (1967). [Google Scholar]
  12. Ershov C.P., Sostoyanie ego perspektivy razvitiya raschetno-eksperimentalnyx rabot in area proektirovaniya tonkostennyx ix konstruktsiy kompozitsionnyx materialov Mexanika kompozitnyx materialov 1. pp 86–92. (1988). [Google Scholar]
  13. Efimov A.B., Aksenenko V.S. and Tsvelix V.A., Reshenie osesimmetrichnoy zadachi teorii uprugosti dlya nesjimaemyx materialov s pomoshchyu hybridnogo metoda konechnyx elementov, Matematicheskoe modelirovanie sistem protsessov. I (I) pp 67–81. (1992) [Google Scholar]
  14. Laura P. A. and Gutierrez R. H. Vibration analysis on a rectangular plate subjected to a thermal gradient Journalof Sound and Vibration 72 pp 263–264 (1980) [Google Scholar]
  15. Gupta A. K. and Khanna A., Vibration of clamped viscoelastic rectangular plate with parabolic thickness variations Shock and Vibration 15 (6) pp 713–723 (2008) [Google Scholar]
  16. Maiboroda V. P., Troyanovskii I. E., Safarov I. I., Vazagashvili M. G. and Katalymova I. V., Wave attenuation in an elastic medium Journal of Soviet Mathematics 60 (2). pp 1379–1382. (1992) [Google Scholar]
  17. Lal R., Transverse vibrations of orthotropic non-uniform rectangular plate with continuously varying density Indian, Journal of Pure and Applied Mathematics 34 pp 587–606 2003 [Google Scholar]
  18. Sobotka Z., Free vibration of visco-elastic orthotropic rectangular plates Acta Technica CSAV. 6, pp. 678–705, (1978) [Google Scholar]
  19. Singh B. and Saxena V., Transverse vibration of rectangular plate with bi-directional thickness variation Journal of Sound and Vibration 198, pp. 51–65, (1996). [Google Scholar]
  20. Safarov I. I., Homidov F. F., Rakhmonov B. S. and Almuratov S. N., Seismic vibrations of complex relief of the surface of the naryn canyon (on the Norin river in Kyrgyzstan) during large-scale underground explosions, Journal of Physics Conference Series 1706 (1) 012125 (2020) [Google Scholar]
  21. Kaplunov J. D. and Wilde M. V., Edge and interfacial vibrations in elastic shells of revolution, J. Appl. Math. Phys. (ZAMP) 51, pp. 29–48, (2000) [Google Scholar]
  22. Lekomtsev S.V., Konechno-elementnye algoritmy rascheta sobstvennykh kolebanii trekhmernykh obolochek Vychisl. Mekh. splosh. Sred 5 (2), pp. 233–243, (2012). [Google Scholar]
  23. Safarov I. I., Teshaev M. Kh. and Boltayev Z. I. Propagation of linear waves in multilayered structural - Inhomogeneous cylindrical shells Journal of Critical Reviews 7 (12), pp. 893–904, (2020). [Google Scholar]
  24. Bochkarev S. A. and Matveenko V.P., Ustoichivost’ koaksial’nykh tsilindricheskikh obolochek, soderzhashchikh vrashchayushchiisya potok zhidkosti Vychisl. Mekh. splosh. sred 6 (1), pp. 94–102, (2013). [Google Scholar]
  25. Maiboroda V. P., Safarov I. I. and Troyanovskii I. E., Free and forced oscillations of a system of rigid bodies on inhomogeneous viscoelastic snubbers, Soviet Machine Science (English Translation of Mashinovedenie) (3) pp 25–31 (1983) [Google Scholar]
  26. Mirsaidov M., Safarov I., Boltayev Z. and Teshaev M., Spread waves in a viscoelastic cylindrical body of a sector cross section with cutouts IOP Conference Series: Materials Science and Engineering 869 (4) 042011 (2020). [Google Scholar]
  27. Prisekin L. V. and Rastorguev I. G. Nova elementa modum finalis enim in mechanicis deformiruemyx Tel Novosibirsk NGTU CCXXXVIII p. (2010). [Google Scholar]
  28. Safarov I. I., Teshaev M., Toshmatov E., Boltaev Z. and Homidov, F. F., Torsional vibrations of a cylindrical shell in a linear viscoelastic medium IOP Conference Series: Materials Science and Engineering 883 (1) 012190 (2020). [Google Scholar]
  29. Mirsaidov M.M., Safarov I.I., Teshaev M.K. and Boltayev Z. I., Dynamics of structural Inhomogeneous coaxial-multi-layered systems cylinder-shells Journal of Physics: Conference Series 1706 (1) 012033 (2020) [Google Scholar]
  30. Teshaev M. Kh, Safarov I. I. and Mirsaidov M. M., Oscillations of multilayer viscoelastic composite toroidal pipes Journal of the Serbian Society for Computational Mechanics 13 (2) pp 104–115 (DOI: 10.24874/jsscm.2019.13.02.02.08) (2019) [Google Scholar]
  31. Mirsaidov M., Safarov I. I. and Teshaev M. Kh., Dynamic instability of vibrations of thin-wall composite curvorine viscoelastic tubes under the influence of pulse pressure E3S Web of Conferences 164 14013 (2020). [Google Scholar]
  32. Boltaev Z. I., Safarov I. I. and Razokov T., Natural vibrations of spherical inhomogeneity in a viscoelastic medium International Journal of Scientific and Technology Research. 9 (1), pp. 3674–3680, (2020), [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.