Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 02041
Number of page(s) 16
Section Road Construction, Building Structures and Materials
DOI https://doi.org/10.1051/e3sconf/202126402041
Published online 02 June 2021
  1. Liao, Y., Mahardika, N., Zhao, X., Lee, J., He, J. Shock wave propagation in long laboratory sparks under negative switching impulses. Journal of Physics D: Applied Physics 54(1), (2021), No. 015205. DOI: 10.1088/1361-6463/abb8ff. [Google Scholar]
  2. Winter, K.O., Hargather, M.J. Three-dimensional shock wave reconstruction using multiple high-speed digital cameras and background-oriented schlieren imaging. Exp Fluids 60, 93 (2019). https://doi.org/10.1007/s00348-019-2738-x. [Google Scholar]
  3. Tomar, A., Arora, R., Chauhan, A. Propagation of strong shock waves in a non-ideal gas. Acta Astronautica, 159 (2019), pp. 96–104. [Google Scholar]
  4. Paul, R.A., Forbes, L.K. A reacting shock in a spherically symmetric gas. Journal of Engineering Mathematics. 113(1), 2018. DOI: 10.1007/s10665-018-9970-x. [CrossRef] [PubMed] [Google Scholar]
  5. Nath, G., Vishwakarma, J.P. Propagation of a strong spherical shock wave in a gravitating or non-gravitating dusty gas with exponentially varying density. Acta Astronautica. 123(1), 2016, pp. 200–212. DOI: 10.1016/j.actaastro.2016.03.009. [Google Scholar]
  6. Steiner, H., Gretler, W. The propagation of spherical and cylindrical shock waves in real gases. Physics of Fluids. 6(6), (1994), pp. 2154–2164. DOI: 10.1063/1.868218. [Google Scholar]
  7. Sultanov, K.S. The attenuation of longitudinal waves in non-linear viscoelastic media // Journal of Applied Mathematics and Mechanics. 2002. 66(1). pp. 115–122. DOI: 10.1016/S0021-8928(02)00015-1. [Google Scholar]
  8. Sultanov, K.S., Kumakov, J.X., Loginov, P. V., Rikhsieva, B.B. Strength of underground pipelines under seismic effects // Magazine of Civil Engineering. 2020. 93(1). pp. 97–120. [Google Scholar]
  9. Bakhodirov, A.A., Ismailova, S.I., Sultanov, K.S. Dynamic deformation of the contact layer when there is shear interaction between a body and the soil // Journal of Applied Mathematics and Mechanics. 2015. 79(6). pp. 587–595. DOI: 10.1016/j.jappmathmech.2016.04.005 [Google Scholar]
  10. Sultanov, K.S. A non-linear law of the deformation of soft soils // Journal of Applied Mathematics and Mechanics. 1998. 62(3). pp. 465–472. DOI: 10.1016/S0021- 8928(98)00058-6. [Google Scholar]
  11. Sultanov, K.S., Bakhodirov, A.A. Laws of Shear Interaction at Contact Surfaces Between Solid Bodies and Soil // Soil Mechanics and Foundation Engineering. 2016. 53(2). pp. 71–77. DOI: 10.1007/s11204-016-9367-7 [Google Scholar]
  12. Mirsaidov, M.M., Khudainazarov, S.O. Spatial natural vibrations of viscoelastic axisymmetric structures. Magazine of Civil Engineering. No. 04. 2020. 96(4). pp. 118–128. DOI: 10.18720/MCE.96.10 [Google Scholar]
  13. Khudainazarov, S.O., Donayev, B., Yarashov, J.A. Non-stationary oscillations of high-rise axisymmetric structures. IOP Conf. Series: Materials Science and Engineering 883 (2020) 012195. DOI: 10.1088/1757-899X/883/1/012195 [Google Scholar]
  14. Khudainazarov, S.O., Mavlanov, T., Qosimov, J., Nurova, O.S. Forced vibrations of high-rise buildings. IOP Conf. Series: Materials Science and Engineering 869 2020, pp.1–13. DOI: 10.1088/1757-899X/869/5/052047. [Google Scholar]
  15. Mirsaidov, M.M., Abdikarimov, R., Khudainazarov, S.O., Sabirjanov, T. Damping of high-rise structure vibrations with viscoelastic dynamic dampers. E3S Web of Conferences 224, 02020 (2020) TPACEE-2020. pp. 1–14 [Google Scholar]
  16. Khudainazarov, S.O., Donayev, B., Abdimuminov, E., Suyunova, Y. Interaction of shock waves with elastic-plastic medium. IOP Conf. Series: Materials Science and Engineering 869 (2020) 052074 [Google Scholar]
  17. Mirsaidov, M.M., Sultanov, T.Z., Rumi, D.F. An assessment of dynamic behavior of the system “structure - Foundation” with account of wave removal of energy. Magazine of Civil Engineering. 2013. 39(4), pp. 94–105. DOI: 10.5862/MCE.39.10. [CrossRef] [Google Scholar]
  18. Sultanov, T.Z., Khodzhaev, D.A., Mirsaidov, M.M. The assessment of dynamic behavior of heterogeneous systems taking into account non-linear viscoelastic properties of soil. Magazine of Civil Engineering. 2014. 45(1), pp. 80–89+117-118. DOI: 10.5862/MCE.45.9. [Google Scholar]
  19. Mirsaidov, M. An account of the foundation in assessment of earth structure dynamics. 2019. E3S Web of Conferences. 97,04015. DOI: 10.1051/e3sconf/20199704015. [Google Scholar]
  20. Jiang, J., Blair, D. P., Baird, G. R. Dynamic response of an elastic and viscoelastic full-space to a spherical source International Journal for Numerical and Analytical Methods in Geomechanics. Vol. 19, Issue 3. pp 181–193. DOI: 10.1002/nag.1610190303. [Google Scholar]
  21. Chattopadhyay, A., Michel, V.A. Model for spherical SH wave propagation in self-reinforced linearly elastic media Archive of Applied Mechanics vol.75 pp.113–124 https://doi.org/10.1007/s00419-005-0417-2. [Google Scholar]
  22. Safarov, I.I., Teshaev, M.K., Boltaev, Z.I. Propagation of linear waves in multilayered structural - Inhomogeneous cylindrical shells. Journal of Critical Reviews, Volume 7, Issue 12, 2020, Pages 893–904. DOI: 10.31838/jcr.07.12.157. [Google Scholar]
  23. Safarov, I.I., Teshaev, M., Toshmatov, E., Boltaev, Z., Homidov, F. Torsional vibrations of a cylindrical shell in a linear viscoelastic medium. IOP Conference Series: Materials Science and Engineering 883(1), 2020, No. 0121902020, DOI: 10.1088/1757-899X/883/1/012190. [Google Scholar]
  24. Rakhmatulin, K.A., Sagomonyan, A.Y., Alekseev, N.A. Issues of soil dynamics. M.: Publishing House of Moscow State University, p.239, (1964) [Google Scholar]
  25. Rakhmatullin K.A. On the propagation of elastic-plastic waves owing to combined loading. Journal of Applied Mathematics and Mechanics. 22(6), 1958, pp. 1079–1088, DOI: 10.1016/0021-8928(58)90034-0. [Google Scholar]
  26. Investigation of the mechanical properties of soils under conditions of triaxial compression at an elevated level of stress. Report of the Moscow Institute of Mathematics and Mathematics named after V.V. Kuybyshev, No. 320 M., p.68, (1972) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.