Open Access
Issue |
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
|
|
---|---|---|
Article Number | 02042 | |
Number of page(s) | 10 | |
Section | Road Construction, Building Structures and Materials | |
DOI | https://doi.org/10.1051/e3sconf/202126402042 | |
Published online | 02 June 2021 |
- A. Lyav. Mathematical theory of elasticity. M.-L.ONTI, USSR, p. 674, (1935) [Google Scholar]
- Kabulov V.K. Algorithmization in the theory of elasticity and deformation theory of plasticity. Tash. Publishing house “Fan” UzSSR. (1966) [Google Scholar]
- Volmir A.S. Flexible plates and sheaths. M.: Gostekhizdat, p. 420, (1956) [Google Scholar]
- Demidovich B.P., Maron I.A. Numerical methods of analysis. M.: Fizmatgiz, p. 367, (1962) [Google Scholar]
- Berezin I.S., Zhidkov N.P. Calculation methods. T. 1.2.M [Google Scholar]
- Demidovich B.P., Maron I.A. Numerical methods of analysis. Edited by B.P. Demidovich, M. Fizmatgiz, (1962) [Google Scholar]
- Yuldashev A., Pirmatov S.T., Minarova, N. Equations of equilibrium of flexible round plates. Austrian J. Technical and Natural Sciences, No. 3-4, pp.32–35, (2015) [Google Scholar]
- Kornishin M.S. Some questions of the application of the finite difference method for solving boundary value problems in the theory of plates. “Applied Mechanics”, 9, No. 36 (1963) [Google Scholar]
- Buriev T. Application of computers to the calculation of elliptical plates. Abstract of candidate dissertation, Tashkent, publishing house “Fan”, UzSSR, (1965) [Google Scholar]
- A. Yuldashev, S.T. Pirmatov. Algorithmization of solving dynamic edge problems of the theory of flexible rectangular plate. Bulletin of the Tomsk State University “Mathematics and Mechanics”. No. 66. pp. 143–157. (2020), DOI: 10.17223 / 19988621/66/12. [Google Scholar]
- Vyachkin E.S., Kaledin V.O., Reshetnikova E.V., Vyachkina A.E. Development of a mathematical model of static deformation of a sandwich structure with pressed layers. Bulletin of the Tomsk State University “Mathematics and Mechanics”. 2018 No. 55. pp. 72–83. DOI: 10.17223 / 19988621/55/7. [Google Scholar]
- Korobeinikov S.N. Nonlinear deformation of solids. Novosibirsk; Publishing house SORAN. p. 262, (2000) [Google Scholar]
- Robotov Y.N. Mechanics of a deformable body M: Nauka, p. 712, (1988) [Google Scholar]
- Berikkhanova G.E., Zhumagulov B.T., Kanguzhin B.E. Matematicheskaya model’ kolebaniy paketa pryamougol’nykh plastin s uchetom tochechnykh svyazey. Tomsk State University Journal of Mathematics and Mechanics. 1 (9). pp. 72–86, (2010) [Google Scholar]
- Yuldashev A., Bekchanov S.E., Akhralov K.Z. Algorithmic Solution of Dynamic Boundary Problems in the Flexible Circular Plates Theory. Journal Technical science and innovation. No. 4, (2020) [Google Scholar]
- Yuldashev A., E.A. Nikolayeva, S.T. Pirmatov. Statistical calculation of flexibel circular plates. Technical science and innovation. no. 2, (2020) [Google Scholar]
- Bate K.Y. Finite Element Methods. Moscow: Fizmatgiz, p. 1024, (2010) [Google Scholar]
- Timoshchenko S.P., Voinovsky-Krieger S. Plates and shells, M., Fizmatgiz, (1963) [Google Scholar]
- Timoshchenko S.P. Shell plates, M., Gostekhizdat, (1948) [Google Scholar]
- Volmira A.S., Theory of flexible round plates, Trans. from Chinese, (1957) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.