Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 03034
Number of page(s) 9
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202126403034
Published online 02 June 2021
  1. Zhukovsky N.E. About water hammer in water pipes, p.104, Moscow, (1949) [Google Scholar]
  2. Charny I.A. Unsteady motion of a real liquid in pipes, p.296, Nedra, (1975) [Google Scholar]
  3. Evangelisti G. Jl colpo d’aviete nelle condotte elevatorie munite di camera d’avia.-L’Energia, Elektrica, X 9, pp. 600–615, Milano, (1938) [Google Scholar]
  4. Dikarevsky V.S., Water conduits. Monograph. Proceedings of RAASN. Construction sciences, vol. 3, p.200, Moscow: RAASN, (1997) [Google Scholar]
  5. Darson F.M., Kalinske A.A. Methods of calculating Water-hammer, pressures.-Journal of the AWWA, v.31, X 11, pp. 1835–1864, (1939) [Google Scholar]
  6. Lyamaev B.F., Nelyubov G.P., Nebolsin V.A. Stationary and transitional processes in complex hydraulic systems.-L .: Mechanical engineering,-p.192, (1978) [Google Scholar]
  7. Fox D.A. Hydraulic analysis of unsteady in pipelines.-M .: Energoizdat,-p.247, (1981) [Google Scholar]
  8. Bergeron L. From water hammer in pipes to discharge in the electrical network. General graphical calculation method (translation from french).-M., Mashgiz,-p.348, (1962) [Google Scholar]
  9. Zhonkobilov U.U. Formulas for calculating air-hydraulic hoods of “directional” action Energy va resource tezhash muammolari magazine, No. 4, pp. 143–146, Tashkent, (2018) [Google Scholar]
  10. Jonkobilov U., Jonkobilov S., Rajabov U., Bekjonov R., Norchayev, A. Shock wave velocity in two-phase pressure flow. IOP Conference Series: Materials Science and Engineering. 2021. 1030. Pp. 012129. DOI: 10.1088/1757-899X/1030/1/012129. [CrossRef] [Google Scholar]
  11. Arifjanov A., Jonqobilov U., Jonqobilov S., Khushiev, S., and Xusanova, J. The influence of hydraulic friction on the maximium pressure of water hammer. IOP Conf. Series: Earth and Environmental Science. 2020. 614. Pp. 012092. DOI: 10.1088/1755-1315/614/1/012092. [CrossRef] [Google Scholar]
  12. Nikolav Nikola. Water hammer at pumping stations with an air reservoir.-Hydraulic engineering and melioration, v. 15, No. 7, pp. 10–16, Sofia, (1970) [Google Scholar]
  13. Hoffman D. Dempfung von Flussigkeitsschwinggungen in Hudraulikleitungen. -Olhudraulik and Pnevmatik-Wiesbaden, bd. 24, X 2, pp. 102–105, (1980) [Google Scholar]
  14. Ludewig D. Beitrage zur flruckstoPsicherung von Pumpanlagen.-Mitteilungen des Institut fur Wasserwirtschaft. Herausgegeben von Institut fur Wasserwirtschaft. Heft 25, p.183, Berlin, (1966) [Google Scholar]
  15. Al-Khomairi A.M., Plastic water hammer damper, Aust. J. Civ. Eng. 8 (1) (2010) 73–81. [CrossRef] [Google Scholar]
  16. Boulos P.F., Karney B.W., Wood D.J., Lingireddy S., Hydraulic transient guidelines for protecting water distribution systems, Am. Water Works Assoc. 97 (5), pp. 111–124, (2005) [CrossRef] [Google Scholar]
  17. Kim S.G., Lee K.B., Kim K.Y., Water hammer in the pump-rising pipeline system with an air chamber, J. Hydrodyn. Ser. B 26 (6) pp. 960–964, (2015) [CrossRef] [Google Scholar]
  18. Marian N., Model of the water-hammer effect considering a spring safety valve, Arch. Hydro-Eng. Environ. Mech. 51 (1) pp. 25–40, (2004) [Google Scholar]
  19. Moghaddas S., The steady-transient optimization of water transmission pipelines with consideration of water-hammer control devices: a case study, J. Water Supply Res. Technol.-Aqua 67 (6), pp. 556–565, (2018) [CrossRef] [Google Scholar]
  20. Stephenson D. Simple guide for design of air vessels for water hammer protection of pumping lines [J]. Journal of Hydraulic Engineering, ASCE, (2002), 128(8), pp.792–797. [CrossRef] [Google Scholar]
  21. Kim S. Impulse response method for pipeline systems equipped with water hammer protection devices [J]. Journal of Hydraulic Engineering, ASCE, 134(7), pp. 961–969, (2008) [CrossRef] [Google Scholar]
  22. Bazarov D., Vatin N., Obidov B., and Vokhidov O. Hydrodynamic effects of the flow on the slab of the stand in the presence of cavitation. IOP Conf. Ser. Mater. Sci. Eng. 1030, 012110 (2021). [Google Scholar]
  23. Bazarov D., Markova I., Norkulov B. and Vokhidov O. Hydraulic aspects of the layout of head structures during water intake from lowland rivers. IOP Conf. Ser. Mater. Sci. Eng. 1015, 012041 (2021). [CrossRef] [Google Scholar]
  24. Bazarov D., Markova I., Sultanov S. and Kattakulov F. Dynamics of the hydraulic and alluvial regime of the lower reaches of the Amudarya after the commissioning of the Takhiatash and Tuyamuyun hydrosystems. IOP Conf. Ser. Mater. Sci. Eng. 1030, 012110 (2021). [Google Scholar]
  25. Krutov A., Choriev R., Norkulov B., Mavlyanova D. and Shomurodov A. Mathematical modelling of bottom deformations in the kinematic wave approximation. IOP Conf. Ser. Mater. Sci. Eng. 1030, 012147 (2021). [Google Scholar]
  26. Krutov A., Norkulov B., Uljaev F., and Jamalov F. Results of a numerical study of currents in the vicinity of a damless water intake. IOP Conf. Ser. Mater. Sci. Eng. 1030, 012121 (2021). [CrossRef] [Google Scholar]
  27. Krutov A., Norkulov B., Mavlyanova D. Simulation of spreading of non-conservative passive substances in water bodies. IOP Conf. Ser. Mater. Sci. Eng. 883(1), 012028 (2020) [Google Scholar]
  28. Krutov A., Norkulov B., Nurmatov P., Mirzaev M. Applicability of zero-dimensional equations to forecast nonconservative components concentration in water bodies. IOP Conf. Ser. Mater. Sci. Eng. 883(1), 012028 (2020) [Google Scholar]
  29. Krutov A., Norkulov B., Artikbekova F., Nurmatov P. Optimal location of an intake at a reservoir prone to salt diffusion. IOP Conf. Ser. Mater. Sci. Eng. 869(7), 072020, (2020) [CrossRef] [Google Scholar]
  30. Shokirov B., Norkulov B., Nishanbaev, K., Khurazbaev, M., Nazarov, B. Computer simulation of channel processes. E3S Web of Conferences, 97, 05012, (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  31. Shomayramov, M., Norkulov B., Rakhmanov J., Tadjiyeva D., Suyunov J. Experimental researches of hydraulic vacuum breakdown devices of siphon outlets of pumping stations. E3S Web of Conferences, 97, 05009, (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  32. Bazarov D. and Vokhidov O. Extinguishing Excess Flow Energy in Spillway Structures. In book: Proceedings of EECE 2020, LNCE 150, pp. 535–545, (2021) DOI: 10.1007/978-3-030-72404-7_52 [Google Scholar]
  33. Bazarov D., Markova I., Norkulov B., Isabaev K., Sapaeva M. Operational efficiency of water damless intake. IOP Conf. Ser. Mater. Sci. Eng. 869(7), 072051, (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.