Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 04007
Number of page(s) 11
Section Mechanization, Electrification of Agriculture and Renewable Energy Sources
DOI https://doi.org/10.1051/e3sconf/202126404007
Published online 02 June 2021
  1. Alsubaie N.M. The Potential of Using Worldview-2 Imagery for Shallow Water Depth Mapping. Diss. University of Calgary, 2012. http://theses.ucalgary.ca/handle/11023/353 (accessed 10.07.2019). (2012). [Google Scholar]
  2. Arifjanov A., M. Otaxonov, L. Samiev, S. Akmalov. Hydraulic calculation of horizontal open drainages. E3S Web of Conferences 97, 05039 (2019). FORM-2019 (a) (2019) [CrossRef] [EDP Sciences] [Google Scholar]
  3. Arifjanov A., S. Akmalov, I. Akhmedov, D. Atakulov, Evaluation of deformation procedure in waterbed of rivers. XII International Scientific Conference on Agricultural Machinery Industry. IOP Conf. Series: Earth and Environmental Science 403 (2019) 012155 (b). (2019) [CrossRef] [Google Scholar]
  4. Arifjanov A., L. Samiev, T. Apakhodjaeva, S. Akmalov. Distribution of river sediment in channels. XII International Scientific Conference on Agricultural Machinery Industry. IOP Conf. Series: Earth and Environmental Science 403 (2019) 012153 (c).(2019) [CrossRef] [Google Scholar]
  5. Arifjanov A., T. Apakhodjaeva, S. Akmalov. Calculation of losses for transpiration in water reservoirs with using new computer technologies. International Conference on Information Science and Communication Technologies (ICISCT). IEEE (2019) Pp 1–4 (d). (2019) [Google Scholar]
  6. Arifjanov A., S. Akmalov, T. Apakhodjaeva, D. Tojikhodjaeva. Comparison of pixel to pixel and object-based image analysis with using WorldView-2 satellite images of Yangiobod village of Syrdarya province. Inter Carto Inter GIS. https://doi.org/10.35595/2414-9179-2020-2-26-313-321. (2020) [Google Scholar]
  7. Arifjanov A.M., S.B. Akmalov, L.N. Samiev. Extraction of urban construction development with using Landsat satellite images and geoinformation systems. Journal of Water and Land Development. No. 48 (I—III) p. 65–69. DOI: 10.24425/jwld.2021.136147. (2021). [Google Scholar]
  8. Chen Z., Ning N., Zhang J. Urban Land Cover Classification Based on WorldView-2 Image Data. In Geomatics for Integrated Water Resources Management (GIWRM), International Symposium on. IEEE. 2012. pp. 1–5. (2012). [Google Scholar]
  9. Dao P.D., Liou Y. Object-Based Flood Mapping and Affected Rice Field Estimation with Landsat 8 OLI and MODIS Data. Remote Sensing,. 7. (5). pp. 5077–5097. (2015) [Google Scholar]
  10. de la Fuente D., Suarez, J., Yague, J., Pedrazzani, D. Potentiality of World-View 2 Data for Precision Agriculture. In Geoscience and Remote Sensing Symposium (IGARSS), IEEE International. pp. 2825–2828.(2013) [Google Scholar]
  11. Elsharkawy A., Elhabiby M., El-Sheimy N. Improvement in the Detection of Land Cover Classes Using the WorldView-2 Imagery. In. ASPRS. International Scientific Conference 2012. pp. 19–23.(2012). [Google Scholar]
  12. Jawak, S. D., Luis A.J. A. Rapid Extraction of Water Body Features from Antarctic Coastal Oasis Using Very High-Resolution Satellite Remote Sensing Data. Aquatic Procedia,. 4. pp. 125–132. (2015) [Google Scholar]
  13. Khin M.L., Shaker A., Joksimovic D., and Yan W.Y. The Use of WorldView-2 Satellite Imagery to Model Urban Drainage System with Low Impact Development (LID) Techniques. Geocarto International,. 31. (1), pp. 92–108.(2016). [Google Scholar]
  14. Kokje, A.A., Gao J. A. Simplified Approach for Classifying Urban Land Cover Using Data Fusion. In Proceedings of the SIRC NZ Conference,. https://otago.ourarchive.ac.nz/handle/10523/4240 (accessed 10.07.2019).(2013) [Google Scholar]
  15. Leonhard, G., Ferre N. Master in Space Applications for Early Warning and Response to Emergencies Final Report. Accessed June 8,. http://aulavirtual.ig. conae.gov.ar/moodle/pluginfile.php/513/mod_page/content/7 5/ Final%20report_Leonhard.pdf. (accessed 10.07.2019).(2015). [Google Scholar]
  16. Maglione P., Parente C., Vallario A. Coastline Extraction Using High Resolution WorldView-2 Satellite Imagery. European Journal of Remote Sensing, 47, pp.68599.(2014). [Google Scholar]
  17. Navulur, K. Multispectral Image Analysis Using the Object-Oriented Paradigm. CRC Press. (2006). [Google Scholar]
  18. Nouri, H., S. Beecham, S. Anderson, Nagler, P. High Spatial Resolution WorldView-2 Imagery for Mapping NDVI and Its Relationship to Temporal Urban Landscape Evapotranspiration Factors. Remote Sensing, 6. (1). pp. 580–602. (2014) [Google Scholar]
  19. Pengra B., Long J., Dahal D., Stehman S.V., Loveland T.R. A Global Reference Database from Very High Resolution Commercial Satellite Data and Methodology for Application to Landsat Derived 30m Continuous Field Tree Cover Data. Remote Sensing of Environment,165. pp. 234–248.(2015). [CrossRef] [Google Scholar]
  20. Platt R.V. Wildfire Hazard in the Home Ignition Zone, An Object-Oriented Analysis Integrating LiDAR and VHR Satellite Imagery. Applied Geography, 51. pp. 108–117. (2014). [CrossRef] [Google Scholar]
  21. Platt R.V. Wildfire Hazard in the Home Ignition Zone, An Object-Oriented Analysis Integrating LiDAR and VHR Satellite Imagery. Applied Geography, 51. pp. 108–117.(2014). [Google Scholar]
  22. Puetz, A.M., Lee K., Olsen K. WorldView-2 Data Simulation and Analysis Results. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XV, International Society for Optics and Photonics, pp. 73340U. (2009). [Google Scholar]
  23. Ribeiro, B. M. G., and L. M. G. Fonseca. Evaluation of WorldView-2 Imagery for Urban Land Cover Mapping Using the InterIMAGE System. In Proceedings of the 4th Conference on Geographic Object-Based Image Analysis GEOBIA, Rio de Janeiro, Brasil,. pp. 206–210.(2012). [Google Scholar]
  24. Rizvi, I.A., and B.K. Mohan. Object-Based Analysis of WorldView-2 Imagery of Urban Areas. In Geoscience and Remote Sensing Symposium (IGARSS). IEEE International.. pp. 431–434 (2012). [Google Scholar]
  25. Song, C., C.E. Woodcock, K.C. Seto, M.P. Lenney, and S.A. Macomber. Classification and Change Detection Using Landsat TM Data, When and How to Correct Atmospheric Effects? Remote Sensing of Environment. V. 75. (2). pp. 230–234, (2001). [Google Scholar]
  26. Tarantino, C., F. Lovergine, G. Pasquariello, M. Adamo, P. Blonda, and V. Tomaselli. 8-Band Image Data Processing of the Worldview-2 Satellite in a Wide Area of Applications. Earth Observation.. pp. 137–152.(2012) [Google Scholar]
  27. Wolf, A.F. Using Worldview-2 Vis-NIR Multispectral Imagery to Support Land Mapping and Feature Extraction Using Normalized Difference Index Ratios. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII. 2012. (8390). Pp. 83900.(2012). [Google Scholar]
  28. glovis.usgs.gov. Last acces 02.01.2020 [Google Scholar]
  29. www.seos-project.eu. Last acces: 02.01.2020 [Google Scholar]
  30. www.nrcan.gc.ca. Last acces: 02.01.2020 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.