Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 05001
Number of page(s) 8
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202126405001
Published online 02 June 2021
  1. Rybakov, V.A., Ananeva, I.A., Pichugin, E.D., Garifullin, M.: Heat protective properties of enclosure structure from thin-wall profiles with foamed concrete. Mag. Civ. Eng. 94, 11–20 (2020). https://doi.org/10.18720/MCE.94.2. [Google Scholar]
  2. Rybakov, V., Seliverstov, A., Petrov, D., Smirnov, A., Volkova, A.: Lightweight steel concrete structures slab panels load-bearing capacity. MATEC Web Conf. 245, (2018). https://doi.org/10.1051/matecconf/201824508008. [Google Scholar]
  3. Cao, H.: Analysis of mechanical properties of transition segment of road and bridge based on high-strength foam concrete. Frat. ed Integrita Strutt. 13, 831–839 (2019). https://doi.org/10.3221/IGF-ESIS.49.73. [Google Scholar]
  4. Song, Z., Lu, Z., Lai, Z.: The effect of lithium silicate impregnation on the compressive strength and pore structure of foam concrete. Constr. Build. Mater. 277, 122316 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122316. [Google Scholar]
  5. Fediuk, R., Amran, M., Vatin, N., Vasilev, Y., Lesovik, V., Ozbakkaloglu, T.: Acoustic Properties of Innovative Concretes: A Review. Materials (Basel). 14, 398 (2021). https://doi.org/10.3390/ma14020398. [CrossRef] [PubMed] [Google Scholar]
  6. Mechtcherine, V., Markin, V., Will, F., Näther, M., Otto, J., Krause, M., Nerella, V.N., Schröfl, C.: Production of monolithic, load-bearing, heat-insulating wall structures by additive manufacturing with foam concrete. Bauingenieur. 94, 405–415 (2019). [Google Scholar]
  7. Sherbin, S.A., Gorbach, P.S.: Foam concrete production with addition of microsilica. IOP Conf. Ser. Mater. Sci. Eng. 880, (2020). https://doi.org/10.1088/1757-899X/880/1/012021. [Google Scholar]
  8. Lesovik, V., Voronov, V., Glagolev, E., Fediuk, R., Alaskhanov, A., Amran, Y.H.M., Murali, G., Baranov, A.: Improving the behaviors of foam concrete through the use of composite binder. J. Build. Eng. 31, 101414 (2020). https://doi.org/10.1016/j.jobe.2020.101414. [Google Scholar]
  9. Sychova, A., Solomahin, A., Kotovich, V., Svatovskaya, L., Kamenev, Y.: Improving of the monolithic foamconcrete quality for used in the high-rise constructions. E3S Web Conf. 33, (2018). https://doi.org/10.1051/e3sconf/20183302058. [CrossRef] [EDP Sciences] [Google Scholar]
  10. Gailitis, R., Korniejenko, K., Sprince, A., Pakrastins, L.: Comparison of the long-term properties of foamed concrete and geopolymer concrete in compression. AIP Conf. Proc. 2239, 20003 (2020). https://doi.org/10.1063/5.0007787. [Google Scholar]
  11. Kuzielová, E., Pach, L., Palou, M.: Effect of activated foaming agent on the foam concrete properties. Constr. Build. Mater. 125, 998–1004 (2016). https://doi.org/10.1016/j.conbuildmat.2016.08.122. [Google Scholar]
  12. Montayev, S.A., Shakeshev, T., Muratbai, Z., Ryskaliyev, N., Bolatovna, A., Narikov, K.A., Khan, Z., Kazakhstan, W.: COLLAGEN AGENT TECHNOLOGY FOR FOAM CONCRETE PRODUCTION. 12, (2017). [Google Scholar]
  13. Kadela, M., Kukiełka, A., Małek, M.: Characteristics of lightweight concrete based on a synthetic polymer foaming agent. Materials (Basel). 13, 1–15 (2020). https://doi.org/10.3390/ma13214979. [CrossRef] [Google Scholar]
  14. Falliano, D., Restuccia, L., Gugliandolo, E.: A simple optimized foam generator and a study on peculiar aspects concerning foams and foamed concrete. Constr. Build. Mater. 268, 121101 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121101. [Google Scholar]
  15. Falliano, D., De Domenico, D., Ricciardi, G., Gugliandolo, E.: Key factors affecting the compressive strength of foamed concrete. IOP Conf. Ser. Mater. Sci. Eng. 431, 062009 (2018). https://doi.org/10.1088/1757-899X/431/6/062009. [Google Scholar]
  16. Nambiar, E.K.K., Ramamurthy, K.: Air-void characterization of foam concrete. Cem. Concr. Res. 37, 221–230 (2007). https://doi.org/10.1016/j.cemconres.2006.10.009. [Google Scholar]
  17. Ramamurthy, K., Kunhanandan Nambiar, E.K., Indu Siva Ranjani, G.: A classification of studies on properties of foam concrete. Cem. Concr. Compos. 31, 388–396 (2009). https://doi.org/10.1016/j.cemconcomp.2009.04.006. [Google Scholar]
  18. Liu, Y., Ma, C., Wang, D., Wang, Y., Liu, J.: Nonlinear Effect of Moisture Content on Effective Thermal Conductivity of Building Materials with Different Pore Size Distributions. Int. J. Thermophys. 37, 1–27 (2016). https://doi.org/10.1007/s10765-016-2062-0. [Google Scholar]
  19. Deepak, N., Thiagu, H., Manivel, S.: STUDY ON STRENGTH OF METAKAOLIN BASED FOAMED CONCRETE UNDER DIFFERENT ELEVATED TEMPERATURE. ARPN J. Eng. Appl. Sci. 14, 2980–2986 (2019). [Google Scholar]
  20. Vatin, N., Barabanshchikov, Y., Usanova, K., Akimov, S., Kalachev, A., Uhanov, A.: Cement-based materials with oil shale fly ash additives. IOP Conf. Ser. Earth Environ. Sci. 578, 012043 (2020). https://doi.org/10.1088/1755-1315/578/1/012043. [Google Scholar]
  21. Lesovik, V., Glagolev, E., Voronov, V., Zagorodnyuk, L., Fediuk, R., Baranov, A., Alaskhanov, A., Svintsov, A.: Durability behaviors of foam concrete made of binder composites. Mag. Civ. Eng. 100, 10003–10003 (2021). [Google Scholar]
  22. Deepak, N., Thiagu, H., Manivel, S.: STUDY ON STRENGTH OF METAKAOLIN BASED FOAMED CONCRETE UNDER DIFFERENT ELEVATED TEMPERATURE. 14, (2019). [Google Scholar]
  23. Benazzouk, A., Douzane, O., Mezreb, K., Quéneudec, M.: Physico-mechanical properties of aerated cement composites containing shredded rubber waste. Cem. Concr. Compos. 28, 650–657 (2006). [Google Scholar]
  24. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E.: Influence of rubber particles on the properties of foam concrete. J. Build. Eng. 30, 101217 (2020). https://doi.org/10.1016/j.jobe.2020.101217. [Google Scholar]
  25. Koksal, F., Sahin, Y., Gencel, O.: Influence of expanded vermiculite powder and silica fume on properties of foam concretes. Constr. Build. Mater. 257, 119547 (2020). https://doi.org/10.1016/j.conbuildmat.2020.119547. [Google Scholar]
  26. Barabanshchikov, Y., Usanova, K., Akimov, S., Uhanov, A., Kalachev, A.: Influence of electrostatic precipitator ash “zolest-bet” and silica fume on sulfate resistance of Portland cement. Materials (Basel). 13, 1–13 (2020). [CrossRef] [Google Scholar]
  27. Oren, O.H., Gholampour, A., Gencel, O., Ozbakkaloglu, T.: Physical and mechanical properties of foam concretes containing granulated blast furnace slag as fine aggregate. Constr. Build. Mater. 238, 117774 (2020). [Google Scholar]
  28. Barabanshchikov, Y., Usanova, K., Akimov, S., Bílý, P.: Low heat concrete with ground granulated blast furnace slag. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing Ltd (2020). https://doi.org/10.1088/1757-899X/896/1/012098. [Google Scholar]
  29. Bartenjeva, E.: The effect of mineral additives on foam concrete porosity. IOP Conf. Ser. Mater. Sci. Eng. 962, 022023 (2020). https://doi.org/10.1088/1757-899X/962/2/022023. [Google Scholar]
  30. Amran, M., Fediuk, R., Vatin, N., Lee, Y.H., Murali, G., Ozbakkaloglu, T., Klyuev, S., Alabduljabber, H.: Fibre-reinforced foamed concretes: A review. Materials (Basel). 13, 1–36 (2020). https://doi.org/10.3390/ma13194323. [CrossRef] [Google Scholar]
  31. Steshenko, A.B., Kudyakov, A.I., Ryabtseva, N.E.: Cement based foam concrete with hardening accelerators. IOP Conf. Ser. Mater. Sci. Eng. 911, (2020). https://doi.org/10.1088/1757-899X/911/1/012003. [CrossRef] [Google Scholar]
  32. Schumacher, K., Saßmannshausen, N., Pritzel, C., Trettin, R.: Lightweight aggregate concrete with an open structure and a porous matrix with an improved ratio of compressive strength to dry density. Constr. Build. Mater. 264, 120167 (2020). https://doi.org/10.1016/j.conbuildmat.2020.120167. [Google Scholar]
  33. Rybakov, V., Seliverstov, A., Petrov, D., Smirnov, A., Volkova, A.: Strength characteristics of foam concrete samples with various additives. MATEC Web Conf. 245, (2018). https://doi.org/10.1051/matecconf/201824503015. [Google Scholar]
  34. Johnpaul, V., Abiraami, R., Sindhu, R., Balasundaram, N., Solai Mathi, S.: High Strength Lightweight Foam Concrete. IOP Conf. Ser. Mater. Sci. Eng. 1006, (2020). https://doi.org/10.1088/1757-899X/1006/1/012013. [Google Scholar]
  35. Bartenjeva, E.: The increase of heat-insulating properties of foam concrete by introducing mineral additives. IOP Conf. Ser. Mater. Sci. Eng. 456, (2018). https://doi.org/10.1088/1757-899X/456/1/012036. [CrossRef] [Google Scholar]
  36. Mashkin, N., Bartenjeva, E.: Research of structuring processes of non-autoclave foam concrete with introduction of mineral additives. IOP Conf. Ser. Mater. Sci. Eng. 451, (2018). https://doi.org/10.1088/1757-899X/451/1/012018. [CrossRef] [Google Scholar]
  37. Rybakov, V., Seliverstov, A., Urmanceva, K.: Lightweight steel-concrete wall bearing structures under high-temperature exposure. Lect. Notes Civ. Eng. (2021). [Google Scholar]
  38. Rybakov, V., Seliverstov, A., Urmanceva, K.: Fire resistance of lightweight steel-concrete slab panels under high-temperature exposure. (2021). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.