Open Access
Issue
E3S Web Conf.
Volume 264, 2021
International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2021)
Article Number 05016
Number of page(s) 8
Section Engineering Materials Science, Intelligent Transport Systems and Transport Logistics
DOI https://doi.org/10.1051/e3sconf/202126405016
Published online 02 June 2021
  1. Kozlov M. and Sheshenin S., Modeling the progressive failure of laminated composites Mechanics of Composite Materials 51, https://doi.org/10.1007/s11029-016-9540-0. (2016) [Google Scholar]
  2. Hoksbergen J. Ramulu M. Reinhall P. and Briggs T., A comparison of the vibration characteristics of carbon fiber reinforced plastic plates with those of magnesium plates, Applied Composite Materials 16 263 https://doi.org/10.1007/s10443-009-9093-7.(2009). [Google Scholar]
  3. Allam M. Zenkour A. and El-Mekawy H., Bending response of inhomogeneous fiber reinforced viscoelastic sandwich plates Acta Mechanica https://doi.org/10.1007/s00707-009-0157-4. (2010) [Google Scholar]
  4. Chen T.J. Chen C.S. and Chen C.W., Dynamic response of fiber-reinforced composite plates Mechanics of Composite Materials 47, (2010) [Google Scholar]
  5. Kumar R. and Ray M. Active damping of geometrically nonlinear vibrations of sandwich plate with fuzzy fiber reinforced composite facings, International Journal of Dynamics and Control 5 314 https://doi.org/10.1007/s40435-015-0180-3. (2015). [Google Scholar]
  6. Eshmatov B., Dynamic stability of viscoelastic circular cylindrical shells taking into account shear deformation and rotatory inertia Applied Mathematics and Mechanics, 28 1319 https://doi.org/10.1007/s10483-007-1005-y (2005) [Google Scholar]
  7. Eshmatov B. Nonlinear vibrations and dynamic stability of viscoelastic orthotropic rectangular plates, Journal of Sound and Vibration, (2007) 300, https://doi.org/10.1016/j.jsv.2006.08.024. [Google Scholar]
  8. Eshmatov B., Nonlinear oscillations of a viscoelastic anisotropic reinforced plate Mechanics of Solids 53 568 doi: https://doi.org/10.3103/S0025654418080101. (2019) [Google Scholar]
  9. Khudayarov B. and Turaev F., Nonlinear supersonic flutter for the viscoelastic orthotropic cylindrical shells in supersonic flow Aerospace Science and Technology, 84 120 https://doi.org/10.1016/j.ast.2018.08.044. (2019) [Google Scholar]
  10. Khudayarov B. Komilova Kh and Turaev F., Numerical simulation of vibration of composite pipelines conveying pulsating fluid International Journal of Applied Mechanics 11 https://doi.org/10.1142/S175882511950090X. (2019) [Google Scholar]
  11. Abdikarimov R. and Khudayarov B., Dynamic stability of viscoelastic flexible plates of variable stiffness under axial compression, International Applied Mechanics 50 389 https://doi.org/10.1007/s10778-014-0642-x (2014) [CrossRef] [Google Scholar]
  12. Abdikarimov R. and Khodzhaev D., Computer modeling of tasks in dynamics of viscoelastic thin-walled elements in structures of variable thickness Magazine of Civil Engineering 5 83https://doi.org/10.5862/MCE.49.9. (2014) [Google Scholar]
  13. Ashton J.E. and Whitney J.M., Theory of laminated plates. Technomic Publishing Co. Inc. Stamford (1970). [Google Scholar]
  14. Jones R.M., Mechanics of composite materials. McGraw-Hill Book Co. New York. (1970). [Google Scholar]
  15. Qatu M.S., Vibration of laminated shells and plates. Elsevier Ltd. (2004) [Google Scholar]
  16. Reddy J.N., Mechanics of laminated composite plates and shells. Theory and analysis. CRC Press. (2004) [Google Scholar]
  17. Yi-Ming Fu, Nonlinear analyses of laminated plates and shells with damage. WIT Press. (2013) [Google Scholar]
  18. Volmir A.S., The nonlinear dynamics of plates and shells. Nauka Publishers Moscow. (1972) [Google Scholar]
  19. Badalov F. Eshmatov Kh and Yusupov M., On certain methods of solving systems of integro-differential equations encountered in viscoelasticity problems Journal of Applied Mathematics and Mechanics 51, 683, https://doi.org/10.1016/0021-8928(87)90025-6. (1987) [Google Scholar]
  20. Eshmatov B. and Khodjaev D. 2007 Nonlinear vibration and dynamic stability of a viscoelastic cylindrical panel with concentrated mass Acta Mechanica 190 165 https://doi.org/10.1007/s00707-006-0418-4 [Google Scholar]
  21. Abdullayev A.A., Ergashev T.G. Poincare-tricomi problem for the equation of a mixed elliptico-hyperbolic type of second kind. Vestnik Tomskogo Gosudarstvennogo Universiteta, Matematika i Mekhanika, (65), pp. 5–21, DOI 10.17223/19988621/65/1. (2000) [Google Scholar]
  22. Islomov B.I. Abdullayev A.A. On a problem for an elliptic type equation of the second kind with a conormal and integral condition. Nanosystems: Physics, Chemistry, Mathematics, 9 (3), p. 307–318, (2018 [Google Scholar]
  23. Vahobov V., Abdullayev A.A., Kholturayev Kh., Hidoyatova M., Raxmatullayev A. On asymptotics of optimal parameters of statistical acceptance control. Journal of Critical Reviews 2020, 7 (11), pp. 330–332, (2020). [Google Scholar]
  24. Yuldashev T.K., Islomov B.I., Abdullaev A.A. On solvability of a Poincare-Tricomi Type Problem for an Elliptic-hyperbolic Equation of the Second Kind. Lobachevskii Journal of Mathematics, 42, (3). pp. 662–674. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.